
Parameter Estimation in
Nonlinear Dynamical Systems

Master’s Thesis

Supervisors:
Michael L. Michelsen & Per G. Thomsen

June 30th 2004

Morten Rode Kristensen

Student No. : s991431

Department of Chemical Engineering
Technical University of Denmark

ii

Preface

This report constitutes my M.Sc. thesis. The thesis was prepared at the Cen-
ter for Phase Equilibria and Separation Processes (IVC-SEP), Department of
Chemical Engineering (KT) in collaboration with Informatics and Mathemati-
cal Modelling (IMM), both at the Technical University of Denmark. The work
presented in the thesis was carried out from February 2nd, 2004, to June 30th,
2004.

First of all, I would like to thank my supervisors, Michael L. Michelsen, KT,
and Per G. Thomsen, IMM, for their invaluable inputs during the many fruitful
discussions that I have had with them, and for always taking the time to answer
my questions. I would also like to thank John Bagterp Jørgensen, 2-Control
ApS, who has been a co-supervisor on the project, for being an everlasting
source of inspiration and motivation. Also thanks to Niels Rode Kristensen for
proofreading the final version of the thesis and to my fellow students Jakob
Kjøbsted Huusom, Kent Johansen, Jakob Sloth and Martin Dan Palis Sørensen
for their moral support during my work on this thesis, but especially for the
many hours that we have shared together during the past five years working on
various projects and assignments.

The topic of this thesis is parameter estimation in dynamical systems, which is
a wide area involving many different aspects of statistics as well as numerical
analysis, at the same time being closely linked to mathematical model building
and experimental design. Many of the areas touched upon in this thesis, such
as solution of differential-algebraic equations or regularization of ill-conditioned
problems, really deserve much more attention. There is much more to be said
about these topics than what is included in this thesis. The main goal of
this thesis, however, is to tackle parameter estimation problems in dynamical
systems by drawing on knowledge about numerical optimization, differential
equation solution, etc. It is hoped that the results presented in this thesis, in
terms of tools and guidelines for systematic handling of the many difficulties
often encountered in parameter estimation, provide a useful methodology for
the practical solution of parameter estimation problems.

With respect to the structure of the thesis, it is composed of three consecutive
parts plus appendices: A literature review including the objective of the work,
a progress report and a final report including the overall conclusion.

Kgs. Lyngby, June 30th, 2004

Morten Rode Kristensen

iv Preface

Summary

The subject of this thesis is parameter estimation in nonlinear dynamical sys-
tems. More specifically, attention is restricted to systems modelled by or-
dinary differential equations and differential-algebraic equations. Estimating
parameters in such systems is both computationally intensive as well as nu-
merically challenging due to a variety of undesirable characteristics, such as
ill-conditioning and stiffness of model equations, often exhibited by real para-
meter estimation problems. By gaining a detailed understanding of the nu-
merical algorithms involved, the goal of this thesis is to provide a systematic
approach for the practical solution of dynamical parameter estimation problems
and, hopefully, contribute to the development of efficient and robust parameter
estimation software.

A review of the relevant literature is given emphasizing the numerical aspects
of parameter estimation. Based on this review a series of benchmark tests are
performed comparing the performance of different optimization algorithms and
differential equation solvers. The results from these tests are used to motivate
the choice of a Levenberg-Marquardt method for solving the least squares opti-
mization problem and a specifically tailored equation solver of the Runge-Kutta
family for joint state and sensitivity integration. These methods are incorpo-
rated into a new program called PARFIT designed to facilitate parameter esti-
mation in dynamical systems. Among several features the program implements
an adaptive tolerance selection mechanism to improve efficiency and an option
for use of regularization to improve robustness in ill-conditioned problems. A
method for tracing the optimal solution from a poor initial parameter guess by
using regularization is proposed. This framework, consisting of the PARFIT
program along with guidelines for systematically addressing the difficulties of-
ten encountered in dynamical parameter estimation, is the main result of the
thesis. The framework is successfully applied to a notoriously difficult problem
from chemical reaction engineering.

vi Summary

Resumé p̊a dansk

Emnet for denne afhandling er parameterestimering i ikke-lineære dynamiske
systemer. Specielt betragtes systemer, der kan modelleres med et sæt af or-
dinære differentialligninger eller differential-algebraiske ligninger. Parameter-
estimering i s̊adanne systemer er b̊ade beregningsmæssigt krævende og numerisk
udfordrende p̊a grund af en række vanskeligheder, s̊asom d̊arlig konditione-
ring og stivhed i modelligninger, der ofte optræder i realistiske parameter-
estimeringsproblemer. Målet med denne afhandling er, gennem en detaljeret
forst̊aelse af de numeriske algoritmer, at udvikle en systematisk tilgang til
den praktiske løsning af dynamiske parameterestimeringsproblemer, og derigen-
nem forh̊abentligt at bidrage til udviklingen af effektive og robuste parameter-
estimeringsprogrammer.

Der er indledningsvist givet en oversigt over den relevante litteratur med vægt
p̊a de numeriske aspekter. Med udgangspunkt heri er der udført en række sam-
menligninger af forskellige optimeringsalgoritmer og differentialligningsløsere.
Resultatet af sammenligningerne er brugt til at motivere valget af en Levenberg-
Marquardt metode til løsning af mindste kvadraters optimeringsproblemet samt
en specielt designet Runge-Kutta differentialligningsløser til samtidig løsning af
model- og sensitivitetsligninger. Optimeringsalgoritmen og differentiallignings-
løseren er indbygget i et nyt program (PARFIT) til parameterestimering i dy-
namiske systemer. Programmet benytter bl.a. en adaptiv metode til justering
af optimeringstolerancen for at øge effektiviteten. Herudover er der indbygget
en mulighed for at benytte regularisering for at øge robustheden ved løsning
af d̊arligt konditionerede problemer. Med udgangspunkt i regularisering er der
foresl̊aet en metode til at spore den optimale løsning fra et d̊arligt begyndelses-
gæt p̊a parametrene. Afhandlingens hovedresultat er en metode best̊aende af
PARFIT programmet samt en systematisk fremgangsmåde til h̊andtering af en
række af de problemer, der ofte opst̊ar i forbindelse med dynamisk parameter-
estimering. Metodens anvendelighed er demonstreret p̊a et erfaringsmæssigt
vanskeligt problem hentet fra kemisk reaktionsteknik.

viii Resumé p̊a dansk

Contents

Preface iii

Summary v

Resumé p̊a dansk vii

Literature Review

1 Introduction 3

1.1 Preliminaries . 4
1.1.1 Motivation . 4
1.1.2 Mathematical Formulation 6
1.1.3 Methods of Estimation 6
1.1.4 Statistical Background 10

1.2 Objective . 11
1.2.1 Schedule . 11

1.3 Notation . 12

2 Numerical Methods for Optimization 13

2.1 Unconstrained Problems . 13
2.1.1 Optimality Conditions 14
2.1.2 Rate of Convergence . 14
2.1.3 Nonlinear Least Squares 16

2.2 Problems with Constraints . 25
2.2.1 Optimality Conditions 25
2.2.2 Sequential Quadratic Programming Methods 27
2.2.3 Multiple Shooting . 30

3 Numerical Solution of the Model Equations 33

3.1 Solving Differential Equations 33
3.1.1 Runge-Kutta Methods 33
3.1.2 BDF Methods . 38

3.2 Efficient Gradient Generation 39
3.2.1 Internal versus External Numerical Differentiation . . . 42
3.2.2 Solving the Sensitivity Equations 43

4 Summary 47

x Contents

Progress Report

5 Benchmarking 51
5.1 Optimizer Performance . 51
5.2 Sensitivity Computation . 61

6 PARFIT (I) : Design Considerations and Initial Development 65
6.1 A Tool for DAE Parameter Estimation 65

6.1.1 Approximation Errors in Fitting Criteria 66
6.1.2 Scaling of Data and Parameters 70
6.1.3 The PARFIT Algorithm 71

6.2 The Dow Chemicals Problem 72

7 Summary 79

Final Report

8 PARFIT (II) : Efficiency, Robustness and Flexibility 83
8.1 Multiple Data Sets . 83

8.1.1 The Dow Chemicals Problem Revisited 84
8.1.2 A Fed-Batch Fermentation Problem 89

8.2 Regularization . 93
8.3 Numerical Difference Approximations 98
8.4 Consistent Initialization of DAEs 99
8.5 Noise Corrupted Data . 101

9 Conclusion 105
9.1 Suggestions for Future Work 108

Appendices

A Description of PARFIT 111
A.1 DAE Solution and Sensitivity Computation 111
A.2 Algorithmic Outline . 114
A.3 Documentation . 115

A.3.1 List of Subroutines . 123
A.3.2 Code Listings . 124

Abbreviations 131

Nomenclature 133

References 135

Literature Review

1

Introduction

Parameter estimation arises in many different areas of engineering, where mathe-
matical models are used to describe real life phenomena and experiments are
performed to validate these models. Advantages of mathematical models in-
clude optimization of design and production and the ability to analyze and un-
derstand system behaviour subject to conditions that are not readily handled
by experiments. Often the models contain a number of parameters that cannot
be measured directly or calculated by applying established laws of nature, and
therefore must be estimated from experimental data. The basic concept is to
determine these parameters such that the differences between the experimental
data and the values predicted by the model are minimal in some sense: The
predicted, theoretical values should fit the measurements. The choice of fitness
criterion depends on the knowledge and the assumptions about the measure-
ment errors.

This thesis addresses the problem of estimating parameters in dynamical models,
especially those described by ordinary differential equations (ODEs) or differ-
ential algebraic equations (DAEs). Methods tailored for partial differential
equation (PDE) models are not discussed, but often these models can be re-
duced to a set of ODEs, which allows the use of techniques developed for ODEs.
Estimating parameters in dynamical models is computationally intensive, since
it requires the repeated (numerical) solution of the underlying set of differential
equations. Efficient and robust methods for solving this problem are important
for the development and improvement of process models. For example, a better
knowledge of kinetic rate constants in the modelling of chemical reactions can
help in choosing operating conditions that favor the desired products.

The purpose of this chapter is to briefly outline different approaches to para-
meter estimation and to discuss the different aspects involved. In Section 1.1
the basic problem is introduced by means of an example, and the motivation
for the work presented in this thesis is given. A mathematical formulation of
the problem is introduced, and different methods of estimation are discussed.
This preliminary section serves to define basic concepts of parameter estima-
tion and especially to provide a short introduction to the statistical aspects,
an area which is not emphasized in the remainder of the thesis. The objective
of this work is stated in Section 1.2 and, finally, an outline of the contents of
the remainder of the thesis is given in Section 1.2.1 in terms of a schedule with
intermediate deadlines for the three parts, which constitute this thesis.

4 Introduction

1.1 Preliminaries

To set the stage a simple example is considered, which will be used, whenever
possible, to illustrate important concepts throughout this thesis:

Example 1.1 (Catalytic Cracking of Gas-Oil)
Numerous reports on this example can be found in the literature, and it has been used
by e.g. Tjoa and Biegler (1991) to evaluate parameter estimation software. The overall
reaction of catalytic cracking of gas-oil (A) to gasoline (Q) and other products (S) is
considered:

A
k1 //

k3 ÁÁ>
>>

>>
>>

> Q

k2ÄÄ¡¡
¡¡

¡¡
¡

S

A model for the concentration of species A and Q is described by the following equa-
tions: [

ẏ1

ẏ2

]
=

[−(k1 + k3)y2
1

k1y
2
1 − k2y2

]
,

[
y1(0)
y2(0)

]
=

[
1
0

]
(1.1)

in which y1 and y2 denote the concentration of A and Q respectively, and k1, k2 and
k3 denote the rate constants for the three reactions. Given a set of experimental data,
the objective is to estimate k1, k2 and k3 such that the differences between the model
predictions and the experimental values are minimized. Since this example only serves
to illustrate important concepts, simulated values will be used instead of experimental
data. ¥

1.1.1 Motivation

The problem of estimating parameters in a model from information about the
states is often referred to as an inverse problem. Parameter estimation is a
part of a larger framework, which includes model formulation and model val-
idation. A typical modelling cycle for the iterative process of building and
validating mathematical models is illustrated in Figure 1.1. Elements shown in
grey constitute tasks, whereas elements shown in white constitute items that
serve as input or output to the individual tasks of the framework. It is assumed
that the modelling is based on first engineering principles, where the models
are constructed from prior physical knowledge. The information obtained from
experiments is then used to estimate the unknown parameters of the model.

First engineering

principles

Model

(re)formulation

Parameter

estimation
Model validation

Experimental

design /

design of operation

etc.

Experimental data Model selection

Unacceptable

Acceptable

Figure 1.1. Modelling cycle based on first engineering principles.

1.1. Preliminaries 5

An alternative strategy is to use data-driven models where both the structure
and the parameters of a model are identified from experimental data. These
models lack a physically meaningful interpretation, since their structure does
not reflect the underlying mechanisms of the system. However, depending on
the area of application, data-driven models are sometimes the preferred choice,
because systematic tools exist for their development, which renders the model-
ling process less time-consuming, or simply because the nature of the system is
not properly understood. A third possible strategy is to use so-called grey-box
models which combine first engineering principles modelling with data-driven
modelling.

Model formulation, model validation and model selection is a systematic process
that eventually leads to the recommendation of one model or a set of models
that are:

1. Consistent with the experimental data.

2. In accordance with well established facts concerning the physical process.

3. Not unnecessarily complex.

This process is closely related to experimental design. Once an acceptable model
is chosen, advice with respect to additional experiments can be given. Since
experiments are often expensive and time-consuming, the insight offered by the
model is valuable. Also, the data obtained from the additional experiments can
be used to improve the estimates of the model parameters. In fact, the model
can be used to devise a set of experiments that yield a parameter estimation
with maximum statistical quality, e.g. smallest possible confidence regions for
the parameters. This area, known as optimum experimental design, was studied
by Bauer et al. (2000). Using this approach, the experimental design phase is a
more integral part of the overall modelling cycle than suggested in Figure 1.1.
The knowledge obtained from statistical tests is used directly to design new
experiments providing data that, when used for parameter estimation, result in
parameter estimates with improved statistical qualities.

This thesis addresses the part of the overall framework concerned with pa-
rameter estimation. Much research has already been carried out to estimate
unknown parameters by fitting a numerical solution to a set of experimental
data. Some publications emphasize the statistical aspects (Bard, 1974; Seber
and Wild, 2003; Stortelder, 1998), while others focus more on the practical
implementation and numerical aspects of optimization and solution of differen-
tial equation models (Schittkowski, 2002). The latter part is also emphasized
in this thesis. Essentially, two components are needed to solve the parameter
estimation problem in dynamical systems: An optimization algorithm and a
differential equation solver. Although extensive research has been conducted
for many years in the areas of optimization and solution of differential equa-
tions, unanswered questions and possible improvements still remain concerning
the particular interaction between optimizer and equation solver encountered
in parameter estimation. Most of the computation time (more than 80% ac-
cording to Stortelder (1998)) in parameter estimation is used solving the dif-
ferential equations and generating gradient information for the optimization

6 Introduction

algorithm. An efficient solution of the differential equations is therefore crucial
to the performance of the overall algorithm.

1.1.2 Mathematical Formulation

The mathematical models considered are assumed to be described by a system
of DAEs:

Dẏ = f(t, y, θ), y(t0,θ) = y0(θ) (1.2)

in which θ ∈ Rnp is a vector of unknown parameters and y ∈ Rn is a state
vector depending on t and θ. f is, in general, a nonlinear function that maps
R× Rn × Rnp into Rn. D is assumed to be a constant n× n diagonal matrix
with dii = 1 if the ith equation is a differential equation and dii = 0 if the
ith equation is algebraic. The above notation for the DAE system is used for
convenience to illustrate the basic setup of the parameter estimation problem.
Later, when solution strategies are discussed, modifications to this notation are
made depending on the specific method considered.

In order to estimate the unknown parameters, a number of measurements are re-
quired for the process under consideration. Adopting the notation of Stortelder
(1998), each measurement is characterized by a triple:

(ci, ti, ỹi) , i = 1, . . . , m (1.3)

in which ci indicates which component of the state vector y that has been mea-
sured, ti is the time of the measurement and ỹi is the measured value. m denotes
the total number of measurements. The solution of the model equations (1.2)
for the cith component at time ti, which corresponds to the ith measurement,
is denoted by yci(ti, θ). With this notation the ith residual is defined as:

ri(θ) = yci(ti,θ)− ỹi (1.4)

This is a simplified statement, assuming that components of the state vector
can be measured directly. More generally, the measurements are associated
with the states through the measurement equation. When the true parameter
vector θ∗ 1 is used, this equation becomes:

ỹi = h(ti, yci(ti,θ
∗), θ∗) + εi (1.5)

in which εi denotes the measurement error associated with the ith measurement.

1.1.3 Methods of Estimation

1.1.3.1 Least Squares

The method of estimation depends on the assumptions and knowledge about
the measurement errors. One of the most widely used methods of estimation is

1In most statistical literature θ∗ is used to denote the “true” value of θ and θ̂ is used
to denote the estimated value of θ∗. In optimization literature, however, an ‘∗’ indicates an
optimal solution. In this thesis, the use of θ∗ as the true parameter vector is limited to this
section on statistical aspects, whereas the notation from optimization literature will be used
in subsequent chapters.

1.1. Preliminaries 7

least squares (LS). In its simplest form the parameters are estimated such that
the sum of squared residuals:

f(θ) =
1
2

m∑

i=1

r2
i (θ) (1.6)

is minimal. The function f : Rnp 7→ R denotes the least squares objective func-
tion. The factor 1

2 is introduced for convenience to avoid a factor of 2 when
taking the derivative of f . As will be discussed later, the least squares criterion
can be regarded as a maximum likelihood (ML) criterion, if certain assump-
tions about the distribution of measurement errors are made. This shows that,
provided these assumptions hold, the least squares estimates possess optimal
statistical properties.

The fitting criterion (1.6) is also referred to as ordinary least squares (OLS).
This criterion is often unsatisfactory for the following reasons (Bard, 1974):

• The measured quantities may have different physical dimensions, or may
be measured on different scales. For example, some of the measurements
in the measurement vector ỹ may represent concentrations of a chemical
species, expressed in mole fractions and falling into the range zero to one.
Other measurements, however, may be temperature measured in Kelvin
with values in a much higher range. Fitting an OLS criterion will most
likely result in the temperature residuals dominating those of the mole
fractions, and any information contained in the latter will be lost.

• Some measurements may be known to be less reliable than others. Thus,
a tool is needed to make sure that the parameter estimates are less influ-
enced by these measurements relative to the more accurate ones.

The solution to both of these problems is to introduce weight factors into the
objective function resulting in a weighted least squares (WLS) criterion:

f(θ) =
1
2

m∑

i=1

w2
i r

2
i (θ) (1.7)

The weights are chosen small, if the measurements are unreliable or measured
on a large scale and large if the opposite is true. An implicit assumption of
OLS and WLS is that the errors are only present in the dependent variables.
That is, the independent variable (often time) is assumed to be known without
error. An approach considering errors in all variables is total least squares
(TLS), also referred to as orthogonal distance regression (Stortelder, 1998). If
the measurement errors in time are denoted ξi (i = 1, . . . , m), the measured
time is given by:

t̃i = ti + ξi (1.8)

The residuals related to the independent variables are denoted δi. Thus, the
overall residuals between the measurements and the theoretical values now de-
pend on both θ and δ:

ri(θ, δi) = yci(ti + δi, θ)− ỹi (1.9)

8 Introduction

This leads to the following TLS fitting criterion:

f(θ, δ) =
1
2

m∑

i=1

w2
i r

2
i (θ, δi) + d2

i δ
2
i (1.10)

in which di denotes the weight associated with the ith residual of the indepen-
dent variable. If the weights in (1.10) are chosen equal, then minimization of
the TLS criterion corresponds to minimizing the orthogonal distance between
the measurements and the curve y(t, θ), hence the name orthogonal distance
regression. The difference between TLS and OLS, in which the vertical distance
is minimized, is illustrated in Figure 1.2.

1
t

2
t

3
t

4
t

5
t

y

(a) Ordinary least squares.

1
t

2
t

3
t

4
t

5
t

y

(b) Total least squares.

Figure 1.2. Graphical comparison between ordinary least squares and total least
squares. The OLS estimate is based on minimizing the vertical distance between
the measurements and the curve, whereas the TLS estimate minimizes the distance
orthogonal to the curve.

1.1.3.2 Maximum Likelihood

The maximum likelihood estimates are derived from the probability density
function of the measurement errors. Under certain assumptions these estimates
coincide with the OLS or WLS estimates, which will be discussed in the follow-
ing. In this section the errors are assumed to be present only in the dependent
variables.

The measurement errors εi are assumed mutually independent and normally
distributed with zero mean and variance σ2, i.e. εi ∼ N (0, σ2). The covariance
matrix for the vector of measurement errors is:

V = E{εεT } = σ2Im (1.11)

where E denotes the expectation operator. The residuals and the measurement
errors coincide when the true parameter vector θ∗ is used, c.f. (1.4) and (1.5).

1.1. Preliminaries 9

Therefore, if the residuals are assumed to give an adequate representation of the
measurement errors, the probability density function for the assumed structure
of the measurement errors is given by (Seber and Wild, 2003):

p(ỹ|θ) =
(
2πσ2

)−m/2 exp
(−∑m

i=1 r2
i (θ)

2σ2

)

=
(
2πσ2

)−m/2 exp
(
−1

2
r(θ)T V −1r(θ)

) (1.12)

in which r : Rnp 7→ Rm denotes a vector of assembled residuals. The maximum
likelihood estimate is the value of θ that maximizes the probability density
function, i.e. the most likely θ for a given data set. The likelihood function is
defined as:

L(θ) ≡ p(ỹ|θ) (1.13)

Taking the logarithm of the likelihood function yields:

lnL(θ) = −m

2
ln

(
2πσ2

)− 1
2
r(θ)T V −1r(θ) (1.14)

The likelihood function reaches its maximum when the latter term in (1.14)
is minimal, which corresponds to the minimum of the OLS objective function
(1.6). Thus, in the case of independent and identically distributed measure-
ment errors from a normal distribution, the maximum likelihood estimate of θ
coincides with the OLS estimate.

A connection between maximum likelihood and WLS also exists. If the mea-
surement errors are assumed independent and normally distributed, but with
non-constant variances, εi ∼ N (0, σi), the corresponding likelihood function is
(Seber and Wild, 2003):

L(θ) =
(2π)−m/2

√
det (V)

exp
(
−1

2
r(θ)T V −1r(θ)

)
(1.15)

in which V now has non-constant diagonal elements Vii = σ2
i . Again, taking

the logarithm yields:

lnL(θ) = −m

2
ln (2π)−

m∑

i=1

ln(σi)− 1
2

m∑

i=1

(
ri(θ)
σi

)2

(1.16)

Comparing (1.7) and (1.16) shows that the maximum likelihood estimates co-
incide with the WLS estimates, if the weights in (1.7) are chosen proportional
to the reciprocal of the standard deviations:

wi ∝ 1
σi

(1.17)

This establishes the connection between maximum likelihood and WLS. How-
ever, in most practical situations the standard deviations of the measurement
errors are unknown. The standard deviations can be estimated along with the
unknown parameters. If the measurement errors are assumed independent, the
covariance matrix is diagonal. In the more general case, the covariance matrix

10 Introduction

is a full matrix. To limit the number of unknown elements to be estimated,
assumptions such as independence of errors at different points in time and zero
expectation of errors are often made. Details on maximum likelihood estima-
tion with unknown covariance can be found in e.g Bard (1974). These cases
may be regarded as WLS problems with unknown weights.

As mentioned earlier, the choice of estimation method depends on the assump-
tions and knowledge about the measurement errors. The conditions required to
apply a maximum likelihood criterion are often not present, e.g. an incorrect
model structure results in systematic errors. On the other hand, a least squares
criterion may lack a sound statistical interpretation, unless assumptions similar
to maximum likelihood with known variances are made, in which case the two
types of estimation coincide.

1.1.4 Statistical Background

An important part of the mathematical modelling cycle is validation of the
proposed model. Various statistical tests and residual analysis tools are avail-
able including marginal and simultaneous tests for parameter significance and
correlation analysis of residuals computed from validation data sets, i.e. data
sets that were not used for parameter estimation. Here, a brief discussion is
given on estimation of the covariance and calculation of confidence regions for
the parameter estimates.

In this section the errors in the measurements are assumed independent and
normally distributed with zero expectation and known variance σ2. It is impor-
tant to obtain an estimate of the correlation between the estimated parameters.
Correlation between parameters indicates that insufficient information is avail-
able in the data to estimate the model parameters uniquely, so that either the
model structure should be reconsidered or further experiments performed. If
θ̂ denotes the estimated parameter vector, then the covariance matrix for the
parameters can be approximated as follows (Seber and Wild, 2003):

cov
(
θ̂
)

= E

{(
θ∗ − θ̂

)(
θ∗ − θ̂

)T
}

≈ σ̂2
(
H(θ̂)

)−1
(1.18)

in which H(θ̂) denotes the Hessian matrix of the objective function evaluated
at θ̂. σ̂2 is an estimator for σ2:

σ̂2 =
f(θ̂)

m− np
(1.19)

The covariance estimate (1.18) can be derived from a linearization of the ob-
jective function around θ∗. This will be clear when solution strategies are
discussed in the next chapter. An often used approximation to the Hessian
matrix is the so-called Gauss-Newton approximation (see Section 2.1.3). Using
this approximation, (1.18) is rewritten as:

cov
(
θ̂
)
≈ σ̂2

(
J(θ̂)T J(θ̂)

)−1
(1.20)

1.2. Objective 11

Details on the properties of the covariance estimate are found in Seber and Wild
(2003). The only other statistical element considered here is an approximate
confidence interval for the parameter estimates. Assuming that the estimator
for the parameters is normally distributed:

θ̂ ∼ N (θ∗, σ2C), C =
(
H(θ̂)

)−1
(1.21)

a 100(1− α)% marginal confidence interval for the ith parameter is given by:

θ̂i ± t
α/2
m−np

σ̂
√

Cii (1.22)

in which t
α/2
m−np

denotes a quantile of the t-distribution with m− np degrees of
freedom. In the case of high correlation between the parameters the marginal in-
tervals might be misleading, since the correlation is not taken into account. Ap-
proaches exist for constructing simultaneous intervals (Seber and Wild, 2003).

1.2 Objective

The objective of this thesis is to assess different methods for parameter esti-
mation in nonlinear dynamical systems. More specifically, the objective is to
study the numerical aspects involved and to build a framework, consisting of
tools and guidelines, capable of handling the many difficulties often encoun-
tered in the practical solution of parameter estimation problems. As indicated
previously, a major task in solving parameter estimation problems in dynamical
systems is the repeated solution of the underlying set of differential equations
and, in particular, the generation of gradient information for the optimization
algorithm. Therefore, one of the goals of this thesis is to study, develop and test
different methods for gradient generation with the ultimate goal of improving
the efficiency and robustness of parameter estimation algorithms.

1.2.1 Schedule

The project is divided into three parts. Below is a preliminary schedule with in-
termediate deadlines for handing in reports and a brief outline of the individual
parts:

• Literature Review – With respect to contents, the first part of the thesis
is devoted to a review of the relevant literature. Important terminology
is defined, and basic principles of parameter estimation are discussed.
Numerical methods for optimization and solution of differential equation
models are emphasized.
Deadline: March 8th 2004.

• Progress Report – Based on the literature review, initial parameter
estimation case studies are performed, starting with small scale problems
with simulated data and continuing to problems with real data. Nume-
rical experiments with different optimization algorithms and differential
equation solvers are performed. Advantages and disadvantages of the

12 Introduction

individual approaches are discussed.
Deadline: May 6th 2004.

• Final Report – The work from the progress report is continued. Further
case studies are performed emphasizing more advanced problems. Effort is
put into developing an efficient, robust and flexible parameter estimation
tool. The overall conclusions are presented and possible improvements to
existing parameter estimation approaches are suggested.
Deadline: June 30th 2004.

1.3 Notation

Since parameter estimation includes aspects of statistical analysis as well as
numerical optimization and solution of differential equations, the notation used
in the literature varies depending on which elements are emphasized in the
individual publications. The notation used in this thesis is summarized in the
tables on pages 133–134.

2

Numerical Methods for
Optimization

This chapter focuses on the methods for numerical optimization required to
solve parameter estimation problems. With some preliminary comments on
optimality conditions, different optimization strategies are discussed both for
the unconstrained and the constrained case. Methods specifically tailored for
nonlinear least squares problems are emphasized. The methods are treated in a
general context, not considering how to solve the underlying set of differential
equations, which is the topic of Chapter 3.

2.1 Unconstrained Problems

In order to discuss properties of different optimization strategies, some basic
definitions and theorems are needed. All proofs, which can be found in standard
textbooks on optimization such as Dennis and Schnabel (1983) or Nocedal and
Wright (1999), are omitted from the discussion. The parameter estimation
problem can be formulated as:

θ∗ = arg min
θ

f(θ) (2.1)

in which θ ∈ Rnp is a vector of parameters, and f : Rnp 7→ R is the objective
function. θ∗ is a vector that minimizes f . f is in general some nonlinear
function of the problem parameters, for example the least squares function
defined in Section 1.1. Thus, the problem is to find θ∗. Ideally, θ∗ would be the
global minimum of f , but often the objective function has several minimizers, so
that θ∗ might only be a local minimizer. The optimization methods discussed
here all find a local minimum, and it is beyond the scope of this thesis to discuss
global methods, which requires more advanced techniques. A local minimizer
is defined as (Nocedal and Wright, 1999):

Definition 2.1 (Local Minimizer)
A point θ∗ is a local minimizer if there exists a neighborhood N of θ∗ such that
f(θ∗) ≤ f(θ) for all θ ∈ N .

A neighborhood of a point is simply defined as a sufficiently small open set that
contains θ∗.

14 Numerical Methods for Optimization

2.1.1 Optimality Conditions

In order to distinguish local minimizers from other points some optimality con-
ditions are needed. If f is twice continuously differentiable, then the following
Taylor expansion for f applies:

f(θ + h) = f(θ) + hT g(θ) +
1
2
hT H(θ)h +O

(
‖h‖3

)
(2.2a)

where the gradient g and the Hessian matrix H are defined as:

g = ∇f(θ) =

∂f
∂θ1
...

∂f
∂θnp

 (2.2b)

H = ∇2f(θ) =
[

∂2f

∂θi∂θj

]
(2.2c)

If θ is a local minimizer, then it is impossible to find an h so that f(θ + h) < f(θ)
with ‖h‖ small enough, which leads to the first order necessary condition for a
local minimum:

Theorem 2.1 (First Order Necessary Condition)
If θ∗ is a local minimizer for f , then g(θ∗) = 0.

Among the points that satisfy g(θ∗) = 0 (stationary points) are also local maxi-
mizers and saddle points. To distinguish the minimizers, it is necessary to in-
clude conditions based on second order information. From the Taylor expansion
(2.2a) it is seen that the second term vanishes for all stationary points, which
implies that a necessary condition for a local minimum is:

Theorem 2.2 (Second Order Necessary Condition)
If θ∗ is a local minimizer for f , then g(θ∗) = 0 and H(θ∗) is positive semidef-
inite.

Again, ‖h‖ is assumed small enough so that the higher order terms in the
Taylor expansion are negligible. Positive semidefiniteness implies by definition
that hT Hh ≥ 0 for all h 6= 0. The last condition presented here is the second
order sufficient condition for optimality, which guarantees that θ∗ is a local
minimum provided some conditions on the derivatives of f :

Theorem 2.3 (Second Order Sufficient Condition)
If g(θ∗) = 0 and H(θ∗) is positive definite, then θ∗ is a local minimizer for f .

These conditions are important when constructing numerical methods to find
the local minimizers, which will be evident in the subsequent sections.

2.1.2 Rate of Convergence

The methods presented here to solve the parameter estimation problem are all
iterative methods that produce a sequence of iterates θ0,θ1, θ2, . . . that, hope-
fully, converges to a local minimizer, i.e. θk → θ∗ for k →∞. An important

2.1. Unconstrained Problems 15

property of a method for optimization is the rate at which this sequence of
iterates converges to the minimizer. The convergence is often divided into a
global part and a local part (Frandsen et al., 1999), which represent the parts of
the iteration far from and close to the local minimizer, respectively. Normally,
the highest rate of convergence is achieved in the local part of the iteration.
Some methods do not even converge if the iteration starts in a position too far
from the minimizer as illustrated in the example below:

Example 2.1 (Newton’s Method on a Nonlinear Equation)
Consider the simple problem of finding the solution to the following scalar equation:

f(θ) = arctan θ = 0 (2.3)

The unique solution is θ∗ = 0, but if Newton’s method is applied with a “bad choice”
of starting point, the sequence of iterates will diverge as illustrated on Figure 2.1.
Newton’s method is not globally convergent for this problem.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

θ
1

θ

2

Bad choice of starting point

θ

0

Figure 2.1. Newton’s method applied to (2.3) with a starting point too far from the
solution.

¥

In what follows, three different rates of convergence are encountered, and these
are defined below (see Dennis and Schnabel (1983)):

Definition 2.2 (Rates of Convergence)
If there exists K ≥ 0 and α ∈ [0, 1[such that for all k ≥ K:

‖θk+1 − θ∗‖ ≤ α ‖θk − θ∗‖ (2.4a)

then the sequence {θk} is said to converge linearly to θ∗. If there exist K ≥ 0
and α > 0 such that for all k ≥ K:

‖θk+1 − θ∗‖ ≤ α ‖θk − θ∗‖2 (2.4b)

then the sequence of iterates converges quadratically to θ∗. Finally, if there
exists a sequence of scalars {αk} converging to zero such that for all k ≥ 0:

‖θk+1 − θ∗‖ ≤ αk ‖θk − θ∗‖ (2.4c)

then the convergence is said to be superlinear.

To be precise, the form of convergence defined above is the so-called q-order of
convergence, where the prefix q stands for “quotient” and is used to differentiate

16 Numerical Methods for Optimization

from r-orders (“root”) of convergence, which is a weaker type of convergence
(Dennis and Schnabel, 1983). When assessing different optimization methods,
it is desirable to have for example linear convergence in the global part, but
at least superlinear convergence in the local part. Newton’s method is locally
quadratic convergent, but not in general globally convergent as seen in Example
2.1.

2.1.3 Nonlinear Least Squares

Many of the methods tailored for nonlinear least squares are based on modi-
fications of Newton’s method. They differ in the way the Hessian matrix is
approximated. As introduced in Section 1.1 the least squares problem has the
following special structure:

min
θ

f(θ) =
1
2

m∑

i=1

r2
i (θ), where ri : Rnp 7→ R and m ≥ np (2.5)

in which ri are the residuals. If the individual residuals are assembled in a
vector r : Rnp 7→ Rm defined by:

r(θ) =

r1(θ)
r2(θ)

...
rm(θ)

 (2.6)

then the objective function in (2.5) is rewritten as:

f(θ) =
1
2
‖r(θ)‖2 =

1
2
r(θ)T r(θ) (2.7)

A simple way to solve the least squares problem is to use Newton’s method,
which relies on a quadratic approximation to the objective function. Provided
that f is sufficiently smooth, then the following Taylor approximation is valid:

f(θ + h) ' f(θ) + hT g(θ) +
1
2
hT H(θ)h (2.8)

In each iterate this quadratic model is minimized, and the minimizer θ∗ to the
least squares problem is approximated by the solution to:

g(θ) + H(θ)h = 0 (2.9)

which states that the gradient of the quadratic model is equal to zero. The
quadratic model has a unique minimum when H is positive definite. Each
iteration in Newton’s method requires the solution of the linear system (2.9),
which again requires the computation of the gradient and the Hessian matrix.
For the least squares objective function, the gradient and Hessian matrices are:

g = ∇f(θ) =
m∑

i=1

rj(θ)∇ri(θ) = J(θ)T r(θ) (2.10a)

H = ∇2f(θ) =
m∑

i=1

∇ri(θ)∇ri(θ)T +
m∑

i=1

ri(θ)∇2ri(θ)

= J(θ)T J(θ) +
m∑

i=1

ri(θ)∇2ri(θ) (2.10b)

2.1. Unconstrained Problems 17

where J(θ) denotes the m× np Jacobian matrix of r:

J(θ) =

∂r1
∂θ1

· · · ∂r1
∂θnp

...
...

∂rm
∂θ1

· · · ∂rm
∂θnp

 (2.11)

It appears that the first part of the Hessian matrix consists of first order par-
tial derivatives. This observation leads to an approximation forming the basis
for the Gauss-Newton and the Levenberg-Marquardt algorithms, which are dis-
cussed in the next sections. Calculation of first and second order derivatives of
the objective function often constitutes a major part of the work required in
optimization. This is especially true in the case of dynamical systems, where
each gradient evaluation is itself a complex procedure requiring the solution of
a set of differential equations. Thus, the incentive to use an efficient method
that exploits the special structure in the least squares problem is particularly
great in the context of parameter estimation in dynamical systems. The need
for second order derivatives of the residual functions ri in Newton’s method
renders it less attractive for practical applications.

2.1.3.1 Line Search versus Trust Region

Before turning to different modifications of Newton’s method the notions of line
search and trust region are briefly explained. In a line search approach each
iterate in the optimization is composed of two parts:

1. Compute a descent direction, i.e. a direction where the objective func-
tion value decreases. An example is the direction of steepest descent
h = −∇f(θ).

2. Compute the length of the step in the direction chosen such that a “suffi-
cient” decrease in f is gained. The overall step is then computed as αh,
where α is the steplength parameter determined from the line search.

Given a descent direction, the line search algorithm searches along this direction
to determine a steplength that provides a sufficient decrease in f . The situation
is depicted on Figure 2.2. The figure illustrates a possible variation of f along
the direction h as expressed by:

φ(α) = f(θ + αh), with fixed θ and h (2.12)

Different strategies are used to ensure that a sufficient decrease is obtained.
First of all, one must guard against α being chosen too large such that f
increases. However, α should not be chosen too small either, giving an insuf-
ficient decrease in f -value. Al-Baali and Fletcher (1986) present a number of
line search algorithms and prove convergence for these. The details are omitted
here, but standard algorithms can also be found in Nocedal and Wright (1999)
as well as in Frandsen et al. (1999). Algorithms seeking the exact minimum of
φ(α) in (2.12) are referred to as exact line searches, whereas algorithms that
accept a sufficient decrease in f are referred to as soft line searches. Exact line

18 Numerical Methods for Optimization

()αϕ

α
Figure 2.2. Variation of the objective function along the search line (Frandsen et al.,

1999).

searches terminate in fewer iterations, but the extra effort spent minimizing
φ(α) in each step makes them overall slower compared to soft line searches
(Frandsen et al., 1999).

Unlike the line search methods, the direction and steplength in a trust region
approach are chosen simultaneously subject to a distance constraint, i.e. the
trust region. The trust region methods rely on a model approximating the
objective function in a region around the current iterate. The step is then chosen
as a minimizer of the model in the trust region. If a step is not acceptable, the
size of the trust region is reduced, and a new minimizer of the model is found.
In more mathematical terms the model could for instance be a linear model:

f(θ + h) ' q(h), where q(h) = f(θ) + hT g(θ) (2.13a)

or a quadratic model as for Newton’s method:

f(θ + h) ' q(h), where q(h) = f(θ) + hT g(θ) +
1
2
hT H(θ)h (2.13b)

In both cases q is only an adequate approximation to f(θ + h) if ‖h‖ is suffi-
ciently small. Therefore h is chosen as the minimizer to the following problem:

h = arg min
h∈D

q(h), where

D = {h | ‖h‖ ≤ ∆} , ∆ > 0
(2.14)

in which D denotes the trust region defined here as a ball with radius ∆. Other
shapes of trust regions are also used, including ellipsoids (Nocedal and Wright,
1999). The size of the trust region is adjusted based on the ratio of the actual
reduction in f -value to the predicted reduction:

% =
f(θ)− f(θ + h)

q(0)− q(h)
(2.15)

When % is close to one, q(h) is a good approximation to f(θ + h), and the trust
region can be expanded. Similarly, % is used to reject steps and reduce the trust
region. Whenever the size of the trust region is altered, both the direction and
length of a step change, which also distinguishes these methods from line search
methods, in which a search is performed along a fixed direction.

2.1. Unconstrained Problems 19

2.1.3.2 The Gauss-Newton Method

As indicated previously, there exist alternative methods to Newton’s method
that avoid calculating the exact second order derivatives of the objective func-
tion. In developing more efficient algorithms, it is important to understand the
different drawbacks of Newton’s method, which are summarized below (Frand-
sen et al., 1999):

1. The method is not globally convergent for many problems, c.f. Example
2.1.

2. It may converge towards a maximum or saddle point of f .

3. The system of nonlinear equations to be solved in each iteration may be
ill-conditioned or singular.

4. The method requires analytic second order derivatives1 of f .

The Gauss-Newton method addresses the last disadvantage in particular. In-
stead of using the full Hessian (2.10b), the second order terms are neglected
and the Gauss-Newton step is found by solving:

(
JT J

)
h = −JT r (2.16)

In this way, only first order derivatives need to be implemented, thereby avoid-
ing the trouble of computing the individual Hessians ∇2ri, i = 1, 2, . . . , m. Nor-
mally, the Gauss-Newton method is implemented with a line search, and it can
be shown to converge, if the Jacobian J has full rank implying that JT J is
positive definite. The rate of convergence depends on how good the Hessian
approximation is. From (2.10b) it is observed that the approximation is rea-
sonable for problems with small residuals (ri is small) or problems where the
residual functions are nearly linear (

∥∥∇2ri

∥∥ is small). Superlinear or even lo-
cally quadratic convergence is observed for these problems (Nocedal and Wright,
1999). However, large residual problems or highly nonlinear problems will cause
slow convergence.

2.1.3.3 The Levenberg-Marquardt Method

A drawback of the Gauss-Newton method is its behaviour when the Jacobian
is rank-deficient or nearly rank-deficient such that the Hessian approximation
is no longer positive definite. The Levenberg-Marquardt method proposed by
Levenberg (1944) and later Marquardt (1963) handles this problem by intro-
ducing a damping parameter µ that “interpolates” between the Gauss-Newton
direction and the steepest descent direction. This can be illustrated by consid-
ering (modified versions of) the two algorithms:

Steepest Descent Gauss-Newton

Solve Ih = JT r
(
JT J

)
h = −JT r

θ ← θ + αh θ ← θ + αh

1This is the strict definition of Newton’s method adopted from Frandsen et al. (1999). If,
for example, the analytic derivatives are replaced by difference approximations, the resulting
method is regarded as a modified Newton’s method.

20 Numerical Methods for Optimization

in which α is determined from a line search. Second order components in
the Hessian are still ignored, and the Levenberg-Marquardt method appears
when combining the steepest descent and Gauss-Newton methods by adding a
multiple of the identity matrix to the Hessian:

Levenberg-Marquardt

Solve
(
JT J + µI

)
h = −JT r

θ ← θ + h

The damping parameter improves the performance in the global part of the it-
eration. When µ is small, which is a good approximation in the final part of the
iteration, the Levenberg-Marquardt step is equal to the Gauss-Newton step, so
the convergence properties of the two methods in this part are the same. The
damping parameter is adjusted based on a measure of the actual decrease in
f -value and the predicted decrease similar to (2.15). This establishes the con-
nection to trust region methods, and the Levenberg-Marquardt method is often
interpreted as a trust region approach (Nocedal and Wright, 1999). Since µ in-
fluences both the direction and the length of a step, no line search is required.
Marquardt (1963) proposed a simple heuristic approach to adjusting µ. Algo-
rithms based on this approach can be shown to converge (Osborne, 1976). Sub-
stantial improvement was obtained on a number of examples by Nielsen (1999)
with a strategy in which µ varies smoothly. Since the Levenberg-Marquardt
method, or modifications of it, will be used in examples in the present chapter
as well as in later chapters of this thesis, an outline of the method is given in
Algorithm 1. µ0 and the tolerance parameters for the stopping criteria ε1 and
ε2 are specified by the user (see Nielsen (1999) for details on µ0).

The Levenberg-Marquardt method is one of the most widely used methods for
solving nonlinear least squares problems. In the example below the method is
tested on the Gas-Oil cracking problem introduced in Section 1.1. These pre-
liminary experiments are conducted in Matlab using the algorithms described
in Madsen et al. (1999). When estimating parameters in larger problems in
subsequent parts of this thesis, the computations are carried out in Fortran.

Example 2.2 (Parameter Estimation in Gas-Oil Cracking Model)
The purpose of this example is to illustrate the performance of the Levenberg-Marquardt
method as outlined in Algorithm 1. The underlying model equations are solved using
the solvers in Matlab, and the objective function gradient is calculated by solving
the corresponding set of sensitivity equations. This important topic will be properly
introduced and treated in much more detail in Chapter 3. For now, it suffices to state
that the objective function value and gradient are available.

Consider again the cracking of gas-oil. The problem is modified slightly assuming
that k3 = k2 to facilitate the demonstration of the performance of the optimization
algorithm. The modified problem is:

[
ẏ1

ẏ2

]
=

[−(k1 + k2)y2
1

k1y
2
1 − k2y2

]
,

[
y1(0)
y2(0)

]
=

[
1
0

]
,

[
k1

k2

]
=

[
12
8

]
(2.18)

The parameters k1 and k2 are estimated from “measurements” generated by the model
at 10 equidistant time points using the parameter values listed above. If yj(ti, θ) and
ỹij denote the prediction and measurement of component j at time ti, respectively,

2.1. Unconstrained Problems 21

Algorithm 1 The Levenberg-Marquardt Method

Set θ = θ0, µ = µ0, ν = 2 and k = 0
Set found = false
Compute the Hessian approximation and the gradient:

A = JT (θ)J(θ)

g = JT (θ)r(θ)
(2.17a)

while not found and k < kmax do
k = k + 1
Solve for h:

(A + µI) h = −g (2.17b)

if ‖h‖ ≤ ε2 ‖θ‖ then found = true end if
Compute % similar to expression (2.15):

% =
f(θ)− f(θ + h)

L(0)− L(h)
(2.17c)

in which L is the linear model approximating f .
if % > 0 then

Update θ:
θ = θ + h (2.17d)

and recalculate the Hessian and the gradient:

A = JT (θ)J(θ)

g = JT (θ)r(θ)
(2.17e)

if ‖g‖ ≤ ε1 then found = true end if
Update µ by strategy described in Nielsen (1999):

µ = µ ·max
{

1
3
, 1− (2%− 1)3

}
, ν = 2 (2.17f)

else

µ = µ · ν, ν = 2 · ν (2.17g)

end if
end while

then the problem may be formulated as:

min
θ

f(θ) =
1
2

2∑

j=1

10∑

i=1

(yj(ti, θ)− ỹij)
2 (2.19)

The tolerance parameters in Algorithm 1 are set to ε1 = ε2 = 10−8 and kmax = 100. As
a starting guess for the parameters θ0 = [k1, k2]T = [1, 1]T is used. The optimization

22 Numerical Methods for Optimization

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

y 1
Estimates
Measurements

(a) y1.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Time

y 2

Estimates
Measurements

(b) y2.

Figure 2.3. Measurements and solution trajectories with optimal parameters for the
gas-oil cracking problem.

0 5 10 15 20
0

2

4

6

8

10

12

14

k
1

k 2

(a) Contours of the objective function
plotted along with the steps taken by the
optimizer. (¤ : initial guess, ∗ : optimal
solution).

0 1 2 3 4 5 6 7 8 9
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterates

f(θ)
Gradient || g ||
Damping parameter µ

(b) Values of f(θ), ‖g‖ and damping pa-
rameter µ in each iterate.

Figure 2.4. Performance of the Levenberg-Marquardt method applied to the gas-oil
cracking problem.

terminates after 9 iterations with the stopping criterion ‖g‖ ≤ ε1 satisfied and with
optimal parameters [k1, k2]T = [12.0000048, 7.9999875]T . The measurements and so-
lution trajectories corresponding to the optimal parameters are plotted in Figure 2.3.

Figure 2.4 illustrates the performance of the Levenberg-Marquardt method applied to
the current problem. The first plot shows the contours of the objective function and the
sequence of steps taken by the optimizer, whereas the second plot shows values of f(θ),
‖g‖ and the damping parameter µ in each iterate. Good convergence is attained for all
iterates. Since this problem is consistent (zero residuals), the Hessian approximation
is good for θ close to θ∗ (c.f. Equation (2.10b)). In agreement with the expected

2.1. Unconstrained Problems 23

behaviour, superlinear or quadratic convergence is observed for the last three iterates.
¥

2.1.3.4 Hybrid Methods

A good approximation of the Hessian matrix is the key to an efficient solution
of the least squares problem. As mentioned earlier, the Gauss-Newton approxi-
mation gives an adequate representation of the Hessian when the residuals at
the optimum are small, or the residual functions are nearly linear causing the
second order terms in Equation (2.10b) to vanish. However, it is desirable to
have methods that perform well also on problems with nonlinearities or large
residuals. This has led to the construction of hybrid methods that are able
to switch between Gauss-Newton or Levenberg-Marquardt and other methods
with superior performance in case of large residuals. Before discussing these
methods, an introduction to quasi-Newton methods for general unconstrained
minimization is required.

Quasi-Newton methods use a matrix B based on information about first order
derivatives to approximate the Hessian. In each iterate the matrix is updated
by adding a correction term producing a sequence of matrices B0, B1, B2, . . .
which, under certain conditions, converge towards the true Hessian. Different
formulae for updating the approximations have been proposed. The so-called
BFGS formula due to Broyden, Fletcher, Goldfarb and Shanno is claimed to
be the best (Dennis and Schnabel, 1983):

Bnew = B +
yyT

hT y
− BhhT B

hT Bh
(2.20)

in which y = g(θnew)− g(θ) and h = θnew − θ. Necessary and sufficient con-
ditions for Bnew to be positive definite are that B is positive definite and
that hT y > 0 (the curvature condition). The latter condition is automatically
satisfied if a line search algorithm is used (Frandsen et al., 1999). Similar to
(2.20), formulae for direct updating of the inverse of the Hessian or even its
Cholesky factors can be derived, which overall is computationally more effi-
cient. Quasi-Newton methods with BFGS updating are normally implemented
with a soft line search, and superlinear final convergence is obtained. This
property makes them attractive for nonlinear least squares problems with large
residuals, where Gauss-Newton or Levenberg-Marquardt methods only achieve
linear convergence.

One way to construct a hybrid method is to start out with Gauss-Newton or
Levenberg Marquardt, and then switch to quasi-Newton if the performance
indicates that f(θ∗) is significantly nonzero. Methods based on this idea have
been proposed by Al-Baali and Fletcher (1985) and Madsen (1988). A diffe-
rent strategy is to use an augmented Gauss-Newton approximation, in which
approximations to the second order terms of the Hessian are included. The
resulting overall approximation is:

B = JT J + S (2.21)

In each iterate S is updated by adding a correction term. One contribution
to this class of methods is the work of Dennis et al. (1981) where the update

24 Numerical Methods for Optimization

is imbedded in a trust region framework. Also, an extensive review on quasi-
Newton methods with application to least squares problems is given by Luksan
and Spedicato (2000).

Example 2.3 (Parameter Estimation in Gas-Oil Cracking Model (Continued))
The hybrid method by Madsen (1988) as discussed above was applied to the parameter
estimation problem in the gas-oil cracking model. The problem has zero residuals at
the optimum, so, as expected, the method never switches to quasi-Newton. Therefore,
similar results are obtained as in Example 2.2 with pure Levenberg-Marquardt.

0 5 10 15 20
0

2

4

6

8

10

12

14

k
1

k 2

(a) Contours of the objective function
plotted along with the steps taken by the
optimizer. (¤ : initial guess, ∗ : optimal
solution).

0 2 4 6 8 10 12 14
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterates

f(θ)
Gradient || g ||

(b) Values of f(θ) and ‖g‖ in each iterate.

Figure 2.5. Performance of a quasi-Newton method with BFGS updating and soft
line search applied to the gas-oil cracking problem.

Instead, the problem is solved with a pure quasi-Newton method with BFGS updat-
ing and soft line search (based on algorithm in Frandsen et al. (1999)). The same
setup as in Example 2.2 is used with tolerance parameters ε1 = ε2 = 10−8 and ini-
tial guess θ0 = [1, 1]T . This time the optimizer terminates with optimal parameters
θ∗ = [12.0000067, 7.9999875]T after 14 iterations, but with 37 function evaluations
compared to 10 evaluations (9 iterations plus 1) with Levenberg-Marquardt. Thus, the
Levenberg-Marquardt method performs expectedly better, since it exploits the special
structure of the least squares problem. Figure 2.5 shows the performance of the quasi-
Newton method. Between iterations 4 and 8 the convergence stalls. Comparing the
two plots shows that the optimizer misses the target initially and needs to “backtrack”
its steps. ¥

The hybrid methods constitute a powerful class of methods for efficient and
robust solution of least squares problems. They are more efficient than pure
quasi-Newton methods with BFGS updating, the reason being that BFGS ap-
proximations usually starts with an identity matrix. As the iterations proceed,
the updated Hessian eventually resembles the actual Hessian, while the hy-
brid methods starts with a better approximation for the least squares problem.
Thus, the Hessian in the hybrid method resembles the actual Hessian at an
earlier stage in the iteration, and therefore better convergence is obtained.

2.2. Problems with Constraints 25

This section concludes the discussion of methods tailored for unconstrained
nonlinear least squares problems. The basic principles of the most commonly
used methods were emphasized. Aspects of implementation were omitted, e.g.
how to solve the (possibly large) linear subproblem arising in each iteration
using decompositions to avoid ill-conditioning, etc., which in itself is a huge
area of research.

2.2 Problems with Constraints

For many practical reasons restrictions may occur with respect to the parame-
ters being estimated (e.g. rate constants are non-negative). Imposing these
restrictions (or constraints) and solving the constrained parameter estimation
problem is much more involved than for the unconstrained case. It is outside
the scope of this thesis to discuss methods for constrained optimization in ge-
neral. Instead, the focus of this section is on a particular class of methods
based on sequential quadratic programming (SQP) that enables general nonlin-
ear constraints to be incorporated into the optimization problem. SQP methods
have proved powerful in parameter estimation problems for dynamical systems
(Schittkowski, 2002), and they also seem the preferred choice in the context of
solving nonlinear optimal control problems (Jørgensen et al., 2004; Leineweber,
1995). At the end of this section a brief discussion is given on a technique to
improve robustness of the parameter estimation procedure without increasing
the computational load.

2.2.1 Optimality Conditions

The following constrained optimization problem is considered:

min
θ

f(θ)

s.t. ci(θ) = 0, i = 1, 2, . . . , me

ci(θ) ≥ 0, i = me + 1, . . . , mc

(2.22)

in which θ ∈ Rnp is the vector of parameters, f : Rnp 7→ R is the objective
function, and ci(θ) : Rnp 7→ R are the constraint functions. A vector θ is said
to be feasible if it satisfies both the equality and inequality constraints in (2.22),
and the set of feasible vectors is denoted P (the feasible region). Furthermore,
an index set I(θ) is defined that holds the indices of the active inequality
constraints at θ:

I(θ) = {i : ci(θ) = 0, me < i ≤ mc} (2.23)

The Lagrangian function, which is central in the development of a solution
procedure for constrained nonlinear optimization, is defined as:

L(θ, λ) = f(θ)−
mc∑

i=1

λici(θ) (2.24)

where λi ∈ Rmc are the Lagrange multipliers. Similar to Section 2.1.1, necessary
and sufficient conditions exist for θ∗ to be a constrained local minimizer. Since

26 Numerical Methods for Optimization

these conditions form the basis for every attempted solution of the optimization
problem, they are included here, although in a non-rigorous form. For the
unconstrained case the first and second order conditions involve the gradient
and the Hessian of the objective function. Completely analogous to this, the
corresponding conditions for the constrained case involve the gradient and the
Hessian (both with respect to θ) of the Lagrangian function.

First, a constraint qualification is needed (Nocedal and Wright, 1999):

Definition 2.3 (Linear Independence Constraint Qualification (LICQ))
The optimization problem (2.22) is said to satisfy a constraint qualification in
θ∗ ∈ P, if the gradients ∇ci(θ∗) for all equality and active inequality constraints
are linearly independent.

With this definition the first order necessary conditions, known as Karush-
Kuhn-Tucker (KKT) necessary conditions, may be stated in the following theo-
rem:

Theorem 2.4 (Karush-Kuhn-Tucker Necessary Condition)
If θ∗ is a local minimizer for f , and the constraint qualification holds, then
there exists a Lagrangian multiplier vector λ∗ ∈ Rmc such that:

∇θL(θ∗,λ∗) = 0 (2.25a)
ci(θ∗) = 0, i = 1, 2, . . . , me (2.25b)
ci(θ∗) ≥ 0, i = me + 1, . . . ,mc (2.25c)

λ∗i ≥ 0, i = me + 1, . . . ,mc (2.25d)
λ∗i ci(θ∗) = 0, i = me + 1, . . . ,mc (2.25e)

The first equations states that the gradient of the Lagrangian function is equal
to zero at the local minimizer, which is quite similar to the first order condition
for the unconstrained case (c.f. Theorem 2.1). Vectors (θ∗,λ∗) that satisfy the
KKT necessary condition are possible candidates for a local solution of problem
(2.22). These vectors, however, also include local maximizers and saddle points.
To distinguish the local minimizer, second order conditions are needed, unless
the sufficient condition in the next theorem holds:

Theorem 2.5 (Karush-Kuhn-Tucker Sufficient Condition)
If f is convex, all equality constraints are linear, and all inequality constraints
are concave, then θ∗ is a global minimizer of (2.22).

This condition that ensures a global solution will be used later in the sub-
problems arising in the SQP method. For situations where the KKT sufficient
condition does not apply, second order information is needed. The second or-
der necessary condition for a local minimizer may be stated as in the following
theorem:

Theorem 2.6 (Second Order Necessary Condition)
If θ∗ is a local minimizer for f , if the constraint qualification holds, and if λ∗

is a vector such that the KKT conditions of Theorem 2.4 are satisfied, then:

hT∇2
θL(θ∗, λ∗)h ≥ 0 (2.26)

2.2. Problems with Constraints 27

for all h ∈ Rnp with ∇ci(θ∗)T h = 0 for i ∈ {1, 2, . . . ,me} ∪ I(θ∗) (all equality
and active inequality constraints). ∇2

θL(θ∗, λ∗) denotes the Hessian of L with
respect to θ given by:

∇2
θL(θ∗,λ∗) = ∇2f(θ∗)−

mc∑

i=1

λ∗i∇2ci(θ∗) (2.27)

This condition can be used to prove that a point which satisfies Theorem 2.4
is not a local minimizer. Finally, the second order sufficient condition, which
is of more practical importance, since it can be used to prove that a point is a
solution to (2.22) without the assumptions of Theorem 2.5, may be stated:

Theorem 2.7 (Second Order Sufficient Condition)
If θ∗ and λ∗ satisfy the KKT conditions of Theorem 2.4, and if:

hT∇2
θL(θ∗, λ∗)h > 0

for every nonzero h ∈ Rnp with ∇ci(θ∗)T h = 0 for i ∈ {1, 2, . . . , me} and for
all h with ∇ci(θ∗)T h = 0 for i ∈ I(θ∗) and λi > 0, then θ∗ is a constrained
local minimizer for f .

The last part is rather tricky, because the necessary and sufficient conditions
only differ with a strict inequality in (2.26), and in the way the active inequality
constraints with zero Lagrange multipliers are treated. A thorough treatment of
optimality conditions for constrained optimization can be found in e.g. Nocedal
and Wright (1999). Here, the conditions are presented as concise as possible
only to facilitate the subsequent discussion of solution strategies.

2.2.2 Sequential Quadratic Programming Methods

The constrained optimization problem (2.22) is considered. The basic principle
for its solution is to replace the problem by a sequence of subproblems, which
are easier to solve. This is a well-known strategy from unconstrained optimiza-
tion, where for example a quadratic model is used to approximate the objective
function in each iteration. Since the approximating model is only valid in a
neighborhood of the current point, either a line search or trust region frame-
work is applied to ensure global convergence. These principles are also used
in SQP methods, which are based on solving a quadratic programming (QP)
subproblem in each iteration. The QP problem is obtained by linearizing the
constraints and approximating the Lagrangian function quadratically.

To illustrate how the QP subproblem arises, the special case with no inequality
constraints is considered:

min
θ

f(θ)

s.t. ci(θ) = 0, i = 1, 2, . . . , mc

(2.28)

Finding a local minimizer of (2.28) is done by solving the KKT necessary con-
ditions of Theorem 2.4:

F (θ, λ) =
[∇θL(θ,λ)
∇λL(θ,λ)

]
=

[∇f(θ)−∇c(θ)T λ
−c(θ)

]
= 0 (2.29)

28 Numerical Methods for Optimization

in which
(∇c(θ))ij =

∂ci

∂θj
(2.30)

If Newton’s method is applied to this system of nonlinear equations, a search
direction (h, η) from the current point (θ, λ) is obtained by solving:

[∇2
θL(θ, λ) −∇c(θ)T

−∇c(θ) 0

]
·
[
h
η

]
= −

[∇f(θ)−∇c(θ)T λ
−c(θ)

]
(2.31)

in which the Hessian of the Lagrangian was defined in (2.27). Conditions on the
coefficient matrix in (2.31) to be non-singular can be found in e.g. Jørgensen
et al. (2004). In each Newton step the following update is made:

θ = θ + h

λ = λ + η
(2.32)

Elimination of η between (2.32) and (2.31) gives:
[∇2

θL(θ, λ) −∇c(θ)T

−∇c(θ) 0

]
·
[
h
λ

]
= −

[∇f(θ)
−c(θ)

]
(2.33)

This is equivalent to:

∇2
θL(θ, λ)h−∇c(θ)T λ +∇f(θ) = 0

∇c(θ)h + c(θ) = 0
(2.34)

These equations are exactly the optimality conditions for the following QP
subproblem (c.f. Theorem 2.5):

min
h

q(h) =
1
2
hT∇2

θL(θ,λ)h +∇f(θ)T h

s.t. ∇c(θ)h + c(θ) = 0
(2.35)

Thus, solving the KKT necessary conditions by Newton’s method is equivalent
to solving a sequence of quadratic programs (2.35). This observation motivates
the formulation of QP subproblems and hence the name sequential quadratic
programming for the overall algorithm. In the case of nonlinear inequality
constraints, (2.35) can still be used if the feasible region is modified to account
for the extra constraints. However, at all times it is necessary to know which
of the inequality constraints that are active. The inequality constraints are
“monitored” by keeping a set of active constraints (an active set strategy).

The above is a very brief description of the principles in SQP methods, and
there still remain important issues to make the methods practical. First, for
reasons similar to the discussion in Section 2.1.3.4, an approximation is needed
to replace the Hessian of the Lagrangian in (2.35). A BFGS update can be ap-
plied, which gives superlinear final convergence (Schittkowski, 2002). For least
squares problems a Gauss-Newton type approximation can be made. Secondly,
since the quadratic approximation is only valid close to the current point, the
methods should be equipped with a line search in order to make the conver-
gence robust. Details on these important topics are given in Nocedal and Wright
(1999).

2.2. Problems with Constraints 29

2.2.2.1 Solving Nonlinear Least Squares Problems by SQP

For nonlinear least squares problems special purpose methods such as Gauss-
Newton or Levenberg-Marquardt are widely used. However, also SQP methods
can be applied to these problems with the additional advantage that constraints
can be handled. Schittkowski (2002, 1988) advocates the use of SQP methods
strongly, showing that the performance is at least comparable, or in some cases
superior, to conventional methods. First, the unconstrained least squares prob-
lem is considered:

min
θ

f(θ) =
1
2

m∑

i=1

r2
i (θ) (2.36)

A transformation of this problem is proposed in Schittkowski (1988), which con-
sists of introducing m additional variables z = [z1, . . . , zm]T and m additional
equality constraints of the form:

ri(θ)− zi = 0, i = 1, . . . , m (2.37)

The transformed problem is:

min
θ,z

1
2
zT z

s.t. r(θ)− z = 0

(2.38)

in which [θ, z] ∈ Rnp+m. Applying the SQP algorithm, Schittkowski shows
that the Hessian of the Lagrangian has a special structure that allows for easy
update, and that the underlying structure of the least squares problem is au-
tomatically exploited in terms of the Gauss-Newton approximation (details are
given in Schittkowski (2002, 1988)). In this way, typical features of special
purpose least squares codes are retained. Although m additional variables are
introduced, the effort required to solve each QP subproblem is still O (

n3
p

)
,

which is comparable to the effort required in each iteration of a Gauss-Newton
or Levenberg-Marquardt method.

Example 2.4 (Parameter Estimation in Gas-Oil Cracking Model (Continued))
The specialized approach of Schittkowski (1988) for nonlinear least squares is studied
in later chapters. Instead, the use of the SQP algorithm fmincon available within
the Optimization Toolbox in Matlab is demonstrated on the parameter estimation
problem for the gas-oil cracking model. fmincon has a medium-scale and a large-
scale option. The medium-scale option used in this example, is an SQP method with
line search and BFGS update, where each QP subproblem is solved using an active
set strategy (Mathworks, 2003). First, a simple optimization is performed with lower
bounds on the parameters, which will not influence the optimal solution:

min
θ

f(θ) =
1
2

2∑

j=1

10∑

i=1

(yj(ti, θ)− ỹij)
2

s.t.

[
θ1

θ2

]
≥

[
0
0

]

The starting point θ0 = [1, 1]T is used, and a tolerance of 10−8 is specified in a stop-
ping criterion based on the magnitude of the gradient. The optimization terminates
after 20 iterations with a total of 55 function evaluations and optimal parameters

30 Numerical Methods for Optimization

θ∗ = [12.001892, 7.999979]T . The sequence of steps is illustrated on Figure 2.6a. Com-
pared to the Levenberg-Marquardt and quasi-Newton approaches more function evalu-
ations are needed. However, a careful interpretation should be made, since differences
in stopping criteria etc. may exist.

0 5 10 15 20
0

2

4

6

8

10

12

14

k
1

k 2

(a) Only lower bounds.

0 5 10 15 20
0

2

4

6

8

10

12

14

k
1

k 2

Infeasible domain

(b) Lower bounds and one additional
nonlinear constraint.

Figure 2.6. Performance of the SQP method fmincon applied to the gas-oil cracking
problem with two different sets of constraints. The contours of the objective function
are plotted along with the steps taken by the SQP algorithm. (¤ : initial guess,
∗ : optimal solution).

To illustrate a situation with active constraints, the problem is changed to:

min
θ

f(θ) =
1
2

2∑

j=1

10∑

i=1

(yj(ti, θ)− ỹij)
2

s.t.

[
θ1

θ2

]
≥

[
0
0

]

1
2
θ2
1 − 24θ1 + 77− θ2 ≥ 0

When starting at θ0 = [1, 1]T the algorithm terminates after 15 iterations and 45
function evaluations, and the optimal parameters are θ∗ = [9.876389, 7.254858]T . The
maximum allowable constraint violation is set to 10−8. The steps are illustrated in
Figure 2.6b. The algorithm finds a local minimum on the border of the feasible domain.
Changing the starting point to θ0 = [13, 1]T gives the second sequence of steps in
Figure 2.6b. This time the algorithm terminates after 24 iterations due to too many
function evaluations (kmax = 200). Inspection shows that no progress is made after
iteration no. 17. The iterations oscillate near the constraint, and the algorithm fails
to satisfy the termination criteria. ¥

2.2.3 Multiple Shooting

To conclude this chapter on optimization strategies in parameter estimation
problems a brief discussion is given on a technique that improves robustness

2.2. Problems with Constraints 31

of the optimization and more effectively uses the available information. All
the methods discussed so far, both constrained and unconstrained, may be
regarded as single shooting techniques, also referred to as initial value problem
(IVP) approaches. Starting with some initial guess on the parameters, the basic
idea of the IVP approach is:

1. Integrate the underlying model equations over the whole time interval.

2. Evaluate the objective function.

3. Compute a correction to the parameters in order to decrease the value of
the objective function.

As pointed out by Bock (1981, 1983) the IVP approach has two major draw-
backs. For poor starting guesses on the parameters, the underlying equations
may be hard to solve, or a solution may not even exist. Even when the “true”
parameters result in a perfectly well conditioned system, poor parameter values
may cause excessive stiffness of the equations or instability in the numerical so-
lution. A second drawback is what Bock (1983) calls the reinversion of the
inverse problem. In the inverse problem information about the states of a sys-
tem is available through the measurements, and the objective is to estimate
unknown parameters. This information, however, is neglected in the IVP ap-
proach, since the states are eliminated by solving the model equations. Thus,
an approach that more efficiently uses the available information is desirable.
Bock (1981, 1983) suggests using a multiple shooting strategy, which is also
referred to as a boundary value problem (BVP) approach, since the problem is
reformulated is a multipoint BVP. The basic concept is to introduce an addi-
tional set of shooting points along the time axis. If [t0, tf] is the time interval
for the overall IVP, then a mesh is defined as:

t0 = τ0 < τ1 < · · · < τms = tf , ∆τj = τj+1 − τj , j = 0, 1, . . . , ms − 1

Instead of integrating over the whole time interval, integration is only performed
from one shooting point to the next. Assuming that the model is described by
a set of ODEs, the problem is separated into ms independent IVPs:

ẏ = f(t, y, θ), y(tj) = sj , t ∈ [τj , τj+1] (2.39)

in which the additional shooting parameters [s0, s1, . . . , sms] are estimates of
the states y(tj). The shooting parameters are unknown parameters which are
computed in addition to the model parameters θ. Thus, the total parameter
vector is:

θ̄ = [s0, s1, . . . , sms ,θ]T (2.40)

To ensure that the final solution is continuous, a set of matching conditions
are introduced, and assuming that no other constraints are present the overall
optimization problem is:

min
θ̄

f(θ̄) =
1
2
r(θ̄)T r(θ̄)

s.t. y(τj+1, sj ,θ)− sj+1 = 0, j = 0, 1, . . . , ms − 1

(2.41)

32 Numerical Methods for Optimization

The additional shooting parameters require starting guesses, and this is actually
the main advantage of multiple shooting, since it allows the user to bring in
information about the states. That is, if measurement values are available for
the states of the system, and if the shooting points coincide with (some of)
the experimental times, then the measurement values can be used as starting
guesses for the shooting parameters. Hence, the influence of poor starting
guesses for the parameters is substantially reduced.

Example 2.5 (Multiple Shooting for Gas-Oil Cracking Model)
This example illustrates the effect of using multiple shooting on the initial trajectories
in the parameter estimation problem for the gas-oil cracking model. Assume that a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

y 1

(a) y1.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Time

y 2

(b) y2.

Figure 2.7. Initial multiple shooting and single shooting trajectories compared to
the final trajectory. (solid lines : multiple shooting; dashed lines : single shooting;
dotted lines : final trajectory).

mesh is constructed with 10 subintervals such that the shooting points coincide with
the experimental times. If the measurement values are used as starting guesses for the
shooting parameters and if θ0 = [1, 1]T , then the initial trajectories are as illustrated
in Figure 2.7. The trajectories are much closer to the final solution compared to the
initial single shooting trajectories. For this example the measurements all coincide with
the final solution. Of course, this is not the case in general, but the measurements can
still provide very good starting guesses for the shooting parameters. ¥

A drawback of multiple shooting is the increased complexity of the problem
caused by the large set of extra parameters that are introduced. However, due
to the special structure of the problem the computational effort is comparable
to single shooting (Bock, 1981, 1983; Schittkowski, 2002).

An alternative to the multiple shooting technique that also treats the problem as
a multipoint BVP is to discretize each subinterval using orthogonal collocation.
Details on orthogonal collocation are found in Villadsen and Michelsen (1978),
and Tjoa and Biegler (1991) have used this approach in parameter estimation
problems.

3

Numerical Solution of the
Model Equations

As indicated earlier, essentially two components are needed for the practical
solution of parameter estimation problems: An optimization algorithm and a
differential equation solver. So far, no considerations have been made regarding
the numerical solution of the model equations and the calculation of gradients
required by the optimization algorithm. Since these key aspects are extremely
important for an efficient and robust solution of parameter estimation problems,
they are addressed in this chapter.

A brief discussion on solving ODEs and DAEs is given in Section 3.1, empha-
sizing two specific classes of methods, which will be used in subsequent chapters
when solving real problems. By far the most computationally intensive part
of parameter estimation in dynamical systems is the calculation of derivative
information for the optimizer (Bard, 1974; Stortelder, 1998), especially when
optimization is required with respect to a large set of parameters. Therefore,
the main focus of this chapter is on different methods specifically tailored for
calculation of derivative information. This is the topic of Section 3.2.

3.1 Solving Differential Equations

The available literature on the numerical solution of ODEs and DAEs is very
rich, and no attempt is made here to review the entire field. An excellent
treatment is found in the books by Hairer, Nørsett and Wanner (1992) and
Hairer and Wanner (1996). Instead, a brief discussion is given on two specific
classes of methods, which also seem the most popular choices: Runge-Kutta
methods and BDF (backward differentiation formula) methods.

3.1.1 Runge-Kutta Methods

For simplicity, the methods are introduced assuming that no algebraic equations
are present. Thus, the following system of equations is considered:

ẏ = f(t, y, θ), y(t0, θ) = y0(θ) (3.1)

in which θ ∈ Rnp is the vector of unknown parameters, y ∈ Rn is the state vector
depending on t and θ, and f is a function mapping R× Rn × Rnp into Rn. The
solution to this initial value problem (IVP) by most numerical schemes proceeds
in a stepwise fashion from a given initial value. Methods that use one starting

34 Numerical Solution of the Model Equations

value at each step are denoted one-step methods, whereas methods using several
values of the solution are denoted multi-step methods. All numerical methods for
ordinary differential equations can be classified into one of these groups. One of
the most widely used classes of one-step methods are the Runge-Kutta methods.
The following scheme represents a general s-stage Runge-Kutta method:

Y i = yn + h
s∑

j=1

aijf(tn + cjh, Y j , θ) (3.2a)

yn+1 = yn + h

s∑

i=1

bif(tn + cih,Y i, θ) (3.2b)

en+1 = h

s∑

i=1

dif(tn + cih,Y i, θ) (3.2c)

in which Y i designates the solution at the ith (i = 1, 2, . . . , s) internal stage of
integration step n and e is the error vector. The coefficients are defined by the
so-called Butcher tableau (Hairer et al., 1992):

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

yn+1 b1 b2 . . . bs

en+1 d1 d2 . . . ds

=
c A

bT

dT
(3.3)

where A is an s× s matrix and b, d and c are s× 1 vectors. Since the numerical
solution of (3.1) is closely linked to quadrature, the elements of c are referred to
as the quadrature nodes and the elements of b are the quadrature weights. The
coefficient vector d contains the quadrature weights used for error estimation.

0 0 0 0
0

γ
γ

γ
γ

γ
γ

γ
γ

γ

ERK DIRK SDIRK ESDIRK FIRK

Figure 3.1. Structure of the A matrix in the Butcher tableau for different classes of
Runge-Kutta methods.

Runge-Kutta methods are classified according to the structure of the A-matrix
in the Butcher tableau as illustrated in Figure 3.1. For explicit methods (ERK),
A is strictly lower triangular, implying that all calculations can be done ex-
plicitly, making these methods computationally fast and straightforward to im-
plement. However, in general, ERK methods have poor stability properties,
which make them unsuited for stiff problems (Hairer et al., 1992). The four
remaining subclasses of Runge-Kutta methods in Figure 3.1 are all implicit.
The values of the internal stages in (3.2) can no longer be calculated explicitly
from the values of the previous stages, but depend nonlinearly on all the stages
(for FIRK methods). Each integration step of an implicit method requires the

3.1. Solving Differential Equations 35

solution of a system of ns nonlinear equations. Normally, an iterative method,
such as Newton’s method, is applied. For diagonal implicit methods (DIRK)
the iterations in the internal stages are carried out for one stage at a time,
lowering the computational cost compared to fully implicit methods (FIRK). If
all diagonal elements of A are identical and upper diagonal elements are zero,
the method is said to be singly diagonal implicit (SDIRK). Finally, if the first
stage of an SDIRK method is explicitly given, the method is said to be explicit
singly diagonal implicit (ESDIRK).

It might seem strange at first that diagonal Runge-Kutta methods draw so much
attention, but they constitute a good compromise between stability, order and
computational efficiency. To illustrate the latter part, the iterations required
in the solution of ith internal stage for an SDIRK method are outlined. From
(3.2) the ith internal stage is:

Y i = yn + h
i−1∑

j=1

aijf(tn + cjh, Y j , θ) + hγf(tn + cih,Y i, θ) (3.4)

In residual form this becomes:

R (Y i) = Y i − yn − h
i−1∑

j=1

aijf(tn + cjh,Y j ,θ)− hγf(tn + cih,Y i, θ)

The residual is equated to zero and solved via Newton iterations:

∇R
(
Y

(k)
i

)
·∆Y i = −R

(
Y

(k)
i

)

Y
(k+1)
i = Y

(k)
i + ∆Y i

in which the gradient of R is:

∇R (Y i) = I − hγ∇yf(tn + cih,Y i, θ) (3.5)

This shows the importance of identical diagonal elements. If the Jacobian of
the ODE system ∇yf is approximated by its value at the first internal stage,
then only one evaluation of the Jacobian and one factorization of ∇R is needed
in each integration step (some codes even reuse the factorization in several
successive steps).

A short introduction of the concepts of order and stability is given in the fol-
lowing. The order of a method is a measure of the rate, at which the error
incurred in the numerical integration from tn to tn + h decreases with the step
length h. The concept of order is defined through the Taylor expansion (Hairer
et al., 1992):

Definition 3.1 (Order of Runge-Kutta Methods)
A method has order p, if the difference between a Taylor series for the exact
solution through the point yn evaluated at y(tn + h) and the numerical solution
yn+1 is O (

hp+1
)
: ∥∥y(tn + h)− yn+1

∥∥ ≤ Khp+1 (3.6)

i.e., the two expansions coincide up to and including the term hp.

36 Numerical Solution of the Model Equations

General order conditions for Runge-Kutta methods can be found in Hairer et al.
(1992). If high accuracy in the solution is required, a method with high order
will normally be advantageous.

Instability in the numerical solution of a problem arises if large differences in the
magnitudes of the eigenvalues exist. A problem with this characteristic is said
to be stiff. Many problems in chemical engineering are known to be stiff due to
the presence of fast and slow phenomena in the processes they originate from.
As mentioned in Section 2.2.3, poor starting guesses for the parameters in a
parameter estimation problem may cause stiffness of the equations, even though
the problem is non-stiff with the final parameter estimates. Consequently, to
ensure robustness of the parameter estimation process, an equation solver with
good stability properties should be applied. Assessment of stability is associated
with the scalar linear equation ẏ = λy, y(0) = y0, where λ ∈ C. For all Runge-
Kutta methods, advancing one step in the solution of this equation is equal to
the multiplication with a rational function, R(z):

yn+1 = R(hλ)yn

R(z) = 1 + zbT (I − zA)−1 1
(3.7)

in which 1 is an s-dimensional unity vector (1, . . . , 1)T . The method is said
to be A-stable, if |R(z)| < 1 for Re(z) < 0. Furthermore, A-stable methods
that satisfy limz→∞R(z) = 0 are called L-stable. This property is particularly
important when solving DAEs. The order conditions and the desired stability
properties jointly define the coefficients of the Butcher tableau for the individual
Runge-Kutta methods. The actual choice of method depends on the desired
application, but diagonal methods with orders 2–4 have been proposed by many
researchers (Nørsett, 1974; Alexander, 1977, 2003; Cameron, 1983; Thomsen,
2002) due to their good stability properties and easy implementation.

3.1.1.1 ESDIRK34: An Implicit Runge-Kutta Solver of Order 3

Several Runge-Kutta codes are available including a five-stage SDIRK method
with order 4 and a three-stage FIRK method with order 5 (RADAU5), both
described in Hairer and Wanner (1996). One of the methods used in subsequent
chapters is a four-stage ESDIRK method with order 3 (Alexander, 2003) imple-
mented in the code ESDIRK34 (see Kristensen et al. (2004a) for details). The
code is tailored for sensitivity integration, the details of which are explained in
Section 3.2. Since this method will be used later, an introduction is given here.

The Butcher tableau of the ESDIRK method is:

0 0
c2 a21 γ
c3 a31 a32 γ
1 b1 b2 b3 γ

yn+1 b1 b2 b3 γ

en+1 d1 d2 d3 d4

(3.8)

The coefficients are provided in Table 3.1. For later reference, ‘ESDIRK34’
denotes this specific method. In its present form ESDIRK34 solves DAEs of

3.1. Solving Differential Equations 37

γ 0.435866521508 b1 0.102399400620
c2 0.871733043017 b2 -0.376878452256
c3 0.468238744852 b3 0.838612530127
a21 0.435866521508 d1 0.054625497240
a31 0.140737774725 d2 0.494208893626
a32 -0.108365551381 d3 -0.221934499735

d4 -0.326899891131

Table 3.1. Coefficients for ESDIRK34 with Butcher tableau (3.8).

the form:

ẏ = f(t,y, z, θ), y(t0) = y0

0 = g(t, y, z, θ), z(t0) = z0
(3.9)

in which y ∈ Rnd and z ∈ Rna . nd and na are introduced to denote the number
of differential and algebraic equations, respectively. The total dimension of the
DAE system is n = nd + na. The extra algebraic equations are solved along
with the implicit equations in each internal stage in (3.2). Only DAE problems
of differential index 1 (implying that ∇zg is nonsingular) are treated.

Figure 3.2. Stability domain for ESDIRK34. The method is stable for all hλ in the
shaded area. The lines are contours of the function |R(hλ)| (c.f. (3.7)).

The ESDIRK34 method has several desirable properties. It is A-stable as well
as L-stable, and the basic order of the method is 3 with an imbedded method of
order 4 for error estimation. The stability domain for the method is illustrated
in Figure 3.2. Since c4 = 1 and a4i = bi for i = 1, . . . , 4 with b4 = γ, the last
stage calculation is equal to the final solution at the end of the current step.
Hereby the final evaluation in (3.2b) can be omitted and in the case of DAE
problems, the algebraic variables are solved without additional computation.
A- and L-stable methods with this additional characteristic are referred to as
stiffly accurate. Stiffly accurate methods avoid the order reduction as observed
by Prothero and Robinson (1974) when applied to stiff differential equations.

38 Numerical Solution of the Model Equations

With the explicit first stage in (3.8), the last stage value of the current step
becomes equal to the first stage value of the next step. In this way, only
three intermediate values need to be calculated in each step. Also, the explicit
first stage ensures high internal stage order. The stage values are themselves
approximations to the solution of the DAE system, and with the design of
ESDIRK34 the first and fourth stages have order 3, whereas the second and
third stages have order 2. The importance of high stage order is related to
DAE problems, in which the stage order influences the order of convergence in
the algebraic variables (Hairer et al., 1987). For ESDIRK34 the same order of
convergence is obtained in the differential and algebraic variables. More details
on the method are found in Alexander (2003), and important implementational
aspects are discussed in Kristensen et al. (2004a).

3.1.2 BDF Methods

The BDF methods belong to the class of multi-step methods. They are based
on numerical differentiation instead of quadrature as for Runge-Kutta methods.
They have been used extensively for the solution of both ODEs and DAEs,
largely due to two powerful codes: DASSL by Linda R. Petzold and LSODE
by Alan C. Hindmarsh. In later chapters of this thesis, an extended version of
DASSL for sensitivity integration will be used, so a brief introduction is given
here.

DASSL (Petzold, 1982) solves systems of DAEs of a more general form than
ESDIRK34:

F (t, y, ẏ) = 0

y(t0) = y0

ẏ(t0) = ẏ0

(3.10)

in which F , y and ẏ are n-dimensional vectors. The basic idea of BDF methods
is to replace the derivative in (3.10) by a difference approximation and solve the
resulting nonlinear system by an iterative method such as Newton’s method.
Replacing the derivative by the first order backward difference, the implicit
Euler formula is obtained:

F

(
tn,yn,

yn − yn−1

h

)
= 0 (3.11)

in which h = tn − tn−1. Instead of always using a first order approximation,
DASSL approximates the derivative using a kth order backward differentiation
formula (BDF), where k ranges from one to five. That is, the kth order BDF
consists of replacing ẏ by the derivative of the polynomial which interpolates
the computed solution at k + 1 times tn, tn−1, . . . , tn−k, evaluated at tn. Sub-
stitution in (3.10) gives:

F
(
tn, yn,

ρyn

h

)
= 0 (3.12)

in which ρyn =
∑k

i=0 αiyn−i, where αi, i = 0, 1, . . . , k are the coefficients of the
BDF method. In principle, the resulting nonlinear system is then solved for yn

via Newton iterations. A much more detailed discussion on BDF methods and
especially on the DASSL code is found in Brenan et al. (1996).

3.2. Efficient Gradient Generation 39

BDF methods such as DASSL are often implemented using an adaptable order
strategy. Being multi-step methods, they start out at low order and succes-
sively build up higher order information as the solution process proceeds. This
works very efficiently as long as the solution trajectories are smooth. However,
one class of problems where multi-step methods are outperformed by one-step
methods is that of ODEs or DAEs exhibiting frequent discontinuities. Multi-
step methods must be restarted at low order after each discontinuity, whereas
one-step methods such as Runge-Kutta methods recommence at higher orders
rendering these methods better suited for this class of problems.

To summarize: The integration method chosen for a specific application should
reflect the nature of the problem at hand. If the problem is stiff, an implicit
integrator with strong stability properties should be used. If it is not stiff,
the use of an explicit method is adequate. When frequent discontinuities are
present, one-step methods should be used, whereas multi-step methods are
advantageous for problems with long and smooth intervals. If high accuracy
in the solution is required, a method with high order should be chosen. These
guidelines, however, are not always useful, since for example the stiffness charac-
teristics of a specific problem are often not known beforehand. Consequently,
for reasons of reliability and robustness, implicit methods are often the default
choice for many practical purposes. For the parameter estimation problem it
should be stressed that the choice of equation solver depends heavily on the
choice of optimization algorithm. If a multiple shooting technique is used,
the obvious conclusion is not to use a multi-step integration method, since
these methods suffer particularly from the frequent restarts of the integration.
Instead, a one-step method should be applied.

3.2 Efficient Gradient Generation

Generation of gradient information for the optimization algorithm is a compu-
tationally demanding task. For parameter estimation problems in ‘stationary’
models, the gradient of an explicit function is required with respect to the para-
meters. For dynamical models, however, the gradient of the solution to a set of
differential equations is required. This circumstance increases the complexity
of the problem, and it is one of the main characteristics distinguishing para-
meter estimation in dynamical models from parameter estimation in stationary
models.

To show how the need for derivatives of the solution to differential equations
arises, the ordinary least squares fitting criterion introduced in Section 1.1.3 is
considered:

f(θ) =
1
2

m∑

i=1

r2
i (θ) (3.13)

in which the residuals are defined as:

ri(θ) = yci(ti,θ)− ỹi (3.14)

where y(t, θ) and ỹ denote the solution to the model equations and the mea-
surements, respectively. If a Gauss-Newton type of method is used for the

40 Numerical Solution of the Model Equations

optimization, only the first order derivative of f(θ) is required. In Section 2.1.3
it was shown that the gradient and the Hessian approximation could be ex-
pressed as J(θ)T r(θ) and J(θ)T J(θ), in which J(θ) refers to the Jacobian of
the residuals. The ijth element of J(θ) is:

J(θ)ij =
∂ri(θ)
∂θj

=
∂yci(ti, θ)

∂θj
(3.15)

which shows that for every measurement (ci, ti, ỹi), i = 1, . . . , m, the derivative
of the model output with respect to the parameters is required. To calculate
these derivatives, one possibility is to solve the so-called sensitivity equations.
Proceeding from the case with only ODEs present1, the sensitivity equations
can be derived by differentiating the ODE system (3.1) with respect to θ using
the chain rule and subsequently exchanging the order of differentiation. This
leads to an additional set of nnp ODEs, written in compact matrix notation as:

∂

∂t

∂y

∂θ
=

∂f

∂y

∂y

∂θ
+

∂f

∂θ
,

∂y(t0,θ)
∂θ

=
∂y0(θ)

∂θ
(3.16)

The existence of derivatives of the solution to (3.1) is given by Gronwall’s
theorem (Gronwall, 1919):

Theorem 3.1 (Gronwall’s Theorem)
If the partial derivatives ∂f/∂y and ∂f/∂θ exist, and are continuous in the
neighborhood of the solution y(t, y0(θ), θ), then the derivatives of the solution
with respect to θ exist, are continuous, and satisfy the linear inhomogeneous
matrix differential equation (3.16).

Thus, the requirement of the optimization algorithm for derivative information
has introduced n additional differential equations into the problem for each
unknown parameter to be estimated. With a large number of parameters,
solving the entire system of model equations plus sensitivity equations with
an off-the-shelf ODE solver, disregarding the special structure of the system,
is highly inefficient. To obtain some insight into possible solution strategies
for the sensitivity equations, the full system is written explicitly to reveal its
special structure. If si denotes the vector of sensitivities with respect to the ith
element of θ, then the full system of model equations and sensitivity equations
is:

ẏ = f(t,y, θ) , y(t0, θ) = y0(θ)

ṡ1 =
∂f

∂y
s1 +

∂f

∂θ1
, s1(t0, θ) =

∂y0(θ)
∂θ1

...
... (3.17)

ṡnp =
∂f

∂y
snp +

∂f

∂θnp

, snp(t0, θ) =
∂y0(θ)
∂θnp

1With algebraic equations present, an extra set of algebraic sensitivity equations are ob-
tained.

3.2. Efficient Gradient Generation 41

The system of equations (3.17) contains one subsystem of n nonlinear ODEs and
np subsystems of the same size of linear sensitivity equations. Direct solution
of (3.17) with an implicit solver requires the Jacobian of the system:

Jac =

∂f

∂y
0 · · · 0

∂2f

∂y2
s1 +

∂2f

∂θ1∂y

∂f

∂y
0.. 0

... 0
. . . 0

∂2f

∂y2
snp +

∂2f

∂θnp∂y
0 ..0

∂f

∂y

(3.18)

This special structure of the Jacobian is exploited in several of the solution
strategies discussed in the following. One observation is made from (3.18),
namely that the overall system has the same eigenvalues as ∂f/∂y, just with
different multiplicity. This means that the sensitivity equations inherit the
stiffness character of the model equations.

It should be mentioned that part of a parameter estimation problem may be
to estimate the initial conditions of the states in a model. Since the right-
hand-side function in an ODE system (normally) has no explicit dependence on
the initial conditions, the corresponding sensitivity equations are homogeneous.
The requirement for sensitivities with respect to initial conditions also arises if
a multiple shooting optimization strategy is used, since the initial conditions of
each shooting interval are introduced as extra parameters in the problem.

Example 3.1 (Sensitivity Calculation in Gas-Oil Cracking Model)
To illustrate the derivation of sensitivity equations, the gas-oil cracking model is con-
sidered again. In the previous examples when testing optimization algorithms, the
solution and the derivatives with respect to parameters were assumed available. The
(modified) gas-oil cracking model is:

[
ẏ1

ẏ2

]
=

[−(k1 + k2)y2
1

k1y
2
1 − k2y2

]
,

[
y1(0)
y2(0)

]
=

[
1
0

]
(3.19)

k1 and k2 are considered unknown. Applying (3.17), the sensitivity equations are
readily derived:

ṡ11 = −2(k1 + k2)y1s11 − y2
1 , s11(0) = 0

ṡ21 = 2k1y1s11 − k2s21 + y2
1 , s21(0) = 0

ṡ12 = −2(k1 + k2)y1s12 − y2
1 , s12(0) = 0

ṡ22 = 2k1y1s12 − k2s22 − y2 , s22(0) = 0

in which sij denotes the sensitivity of state i with respect to parameter j. These
equations need to be integrated each time the gradient of the objective function is
required by the optimization algorithm. The sensitivity trajectories for the final set of
parameters (k1 = 12 and k2 = 8) are plotted in Figure 3.3.

As the name indicates, the sensitivities measure the ‘sensitivity’ of the model states
with respect to changes in the parameters. For example, Figure 3.3a shows that an
increase in k1 at t = 0 leads to an initial decrease in y1 as expected from the model
equations (3.19).

¥

42 Numerical Solution of the Model Equations

0 0.2 0.4 0.6 0.8 1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time

S
en

si
tiv

ity
∂y

1
 / ∂k

1
∂y

2
 / ∂k

1

(a) Sensitivities with respect to k1.

0 0.2 0.4 0.6 0.8 1
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Time

S
en

si
tiv

ity

∂y
1
 / ∂k

2
∂y

2
 / ∂k

2

(b) Sensitivities with respect to k2.

Figure 3.3. Plots of trajectories for parameter sensitivities in gas-oil cracking model.

3.2.1 Internal versus External Numerical Differentiation

Before attempting to solve the sensitivity equations, some alternative approaches
are considered. The most straightforward approach is to approximate the sen-
sitivities using a finite difference formula. The parameters of the system are
perturbed successively by a small tolerance and the model equations are inte-
grated again:

∂y

∂θj
≈ y

(
t, (θ1, . . . , θj + ∆θj , . . . , θnp)

)− y
(
t, (θ1, . . . , θj , . . . , θnp)

)

∆θj
(3.20)

This approach is known as external numerical differentiation (END). With a
first order approximation like (3.20) it requires np + 1 solutions of the model
equations each time the derivatives are required. The choice of the perturba-
tion ∆θj is important for the accuracy obtained. If it is chosen too large, the
difference quotient no longer provide a good approximation to the derivative,
since the truncated higher order terms in the Taylor expansion become signifi-
cant. However, if it is too small, the subtraction in the numerator of (3.20) is
subject to loss of significance, since only a finite number of digits are stored in
the computation.

Another problem of END arises due to the adaptive nature of modern differ-
ential equation solvers. The output from such solvers is usually a disconti-
nuous function of the initial values and parameters (Leineweber, 1995). If, for
example, one of the parameters is varied, jumps of the order of the integrator
tolerance have to be expected, which can cause severe errors in the numerical
estimation of derivatives. These discontinuities are due to the adaptive na-
ture of the stepsize selection mechanisms. They arise when a small change of
an initial condition or parameter causes the integration algorithm to follow a
different path of execution, e.g. employ another sequence of stepsizes. Thus,
unless the integrator tolerance is set extremely low (close to machine precision),
poor estimates of the derivatives are obtained (Leineweber, 1995). Solving the

3.2. Efficient Gradient Generation 43

model equations with a tolerance close to machine precision, however, is com-
putationally very expensive, which renders the whole END approach inefficient.

To avoid the discontinuity problem, a finite difference approach for computa-
tion of the derivatives should adopt an internal numerical differentiation (IND)
strategy (Bock, 1981). The basic principle of IND is to “freeze” the discretiza-
tion such that the unperturbed and perturbed trajectories are calculated using
the same sequence of stepsizes. That is, the same path of execution (same
sequence of stepsizes) is used in the two solutions differenced to estimate the
derivatives. Using this approach, it is no longer necessary to perform the inte-
grations with an extreme tolerance in order to obtain reliable finite difference
approximations (Leineweber, 1995). If an adaptive stepsize algorithm is used,
the stepsizes chosen by the algorithm for the calculation of the unperturbed tra-
jectories are used again for the calculation of the perturbed trajectories. The
IND approach computes an approximation to the well-defined, smooth deriva-
tive of one single discretization scheme, whereas the END approach combines
two (generally different) discretizations to obtain a finite difference approxi-
mation, which is meaningful only if the discretization errors involved are very
small.

The IND approach is much more efficient than END. However, joint integration
of the model equations and sensitivity equations with a specifically tailored
algorithm is even more efficient. If an explicit integration algorithm is used,
IND may be advantageous since some of the methods discussed in the next
section for solution of the sensitivity equations rely on using information only
required by implicit integrators (Jacobian of the equation system etc.).

3.2.2 Solving the Sensitivity Equations

In this section efficient strategies for solving the sensitivity equations are dis-
cussed. Solving these equations is referred to as forward or direct sensitivity
analysis as opposed to adjoint sensitivity analysis. The adjoint approach con-
siders calculating the sensitivities of a scalar response function:

f(θ) =
∫ tf

t0

g(t, y(t, θ), θ)dt (3.21)

Forward sensitivity analysis is best suited for the situation of finding the sensi-
tivities of a potentially large number of variables with respect to a small number
of parameters, whereas adjoint sensitivity analysis is best suited to the compli-
mentary situation of finding the sensitivities of a scalar response function with
respect to a large number of parameters (Cao et al., 2002). Calculating the sen-
sitivities of a scalar response function is exactly the requirement in parameter
estimation problems, so the adjoint methods seems promising at first. How-
ever, in Gauss-Newton type optimization methods the sensitivity coefficients
obtained in the forward approach are used directly to approximate the Hessian.
This observation implies that the adjoint sensitivity method must be used in
conjunction with an optimization method which uses an alternative approxima-
tion to the Hessian (e.g. a quasi-Newton method with BFGS updating). Law
and Sharma (1997) have found by numerical comparison that a Gauss-Newton

44 Numerical Solution of the Model Equations

strategy with forward sensitivity analysis is superior to a quasi-Newton ap-
proach with adjoint sensitivity analysis. The adjoint method is not discussed
further in this review, but details can be found in the relevant literature (Cao
et al., 2002, 2003; Sandu et al., 2003).

As mentioned earlier, the naive approach in forward sensitivity analysis is to
solve the combined system (3.17) directly, which in the case of implicit integra-
tors requires calculation and factorization of the Jacobian (3.18) with dimen-
sion n(np + 1)× n(np + 1). More efficient approaches exist that exploit the
linearity of the sensitivity equations. Many of the existing algorithms for joint
integration of the model and sensitivity equations are extensions to the BDF
based methods LSODE and DASSL, and the terminology used to classify the
sensitivity methods was developed in the context of these methods. The ap-
proaches used for forward sensitivity analysis may roughly be categorized into
three groups:

Staggered direct method. This method, presented by Caracotsios and Stewart
(1985), is also referred to as the decoupled direct method. A similar ap-
proach was proposed by Leis and Kramer (1988). The state and sensitivity
equations are integrated jointly, but in each step of the integration the
nonlinear state equations are solved first, observing the one-way coupling
of the Jacobian (3.18) for the combined system. Once the solution to the
state equations has been updated, the np subsystems of sensitivity equa-
tions are solved directly exploiting the linearity. The sequence of actions
performed in each integration step is:

1. Integrate state equations from tn to tn+1.

2. Perform initial error control on state variables.

3. If error control accepted: Evaluate the Jacobian2 at tn+1 and LU
factorize it.

4. Integrate each subsystem of sensitivity equations from tn to tn+1.
With a fresh factorization of the Jacobian, this is equivalent to one
Newton iteration, since the sensitivity equations are linear.

5. If required: Perform additional error control on sensitivity variables.

Because of the direct solution of the sensitivity equations, a factorization
of the Jacobian is required in each step. The error control can either
include state variables only (partial error control), or both state and sen-
sitivity variables (full error control). This is not specific to the staggered
direct method.

Simultaneous corrector method. The simultaneous corrector method, as
presented by Maly and Petzold (1996), solves the combined system (3.17)
as one nonlinear system without exploiting linearity. The Jacobian of the
combined system (3.18) is approximated by its block diagonal part. The
individual steps are:

1. Integrate state and sensitivity equations simultaneously from tn to
tn+1. Each overall iteration consists of:

2Unless otherwise stated, the Jacobian refers to ∂f/∂y.

3.2. Efficient Gradient Generation 45

Perform one iteration for the state equations.
Perform one iteration for each of the np sensitivity subsystems.

2. Perform error control on state variables.

3. If required: Perform additional error control on sensitivity variables.

Since an iterative procedure is applied to solve the sensitivity equations,
an adaptive strategy can be used to choose when to refactorize the Jaco-
bian. Arguing that one factorization per integration step is too expensive
for large scale problems, Maly and Petzold (1996) claim that the simulta-
neous corrector method is more efficient than the staggered direct method.
A drawback of a simultaneous approach compared to a staggered approach
is, however, that potential error control failures on the state variables ren-
der the effort spent integrating the sensitivity equations fruitless.

Staggered corrector method. This method, proposed by Feehery et al. (1997),
constitutes a compromise between the staggered direct and the simulta-
neous corrector methods. As for the staggered direct method, the state
equations are solved first. Once an acceptable solution has been obtained,
a separate iteration procedure is used to converge the sensitivity equa-
tions:

1. Integrate state equations from tn to tn+1.

2. Perform initial error control on state variables.

3. If error control accepted: Converge sensitivity equations to obtain a
solution at tn+1 using an iterative scheme.

4. If required: Perform additional error control on sensitivity variables.

This method avoids solving the sensitivity equations in steps where the
error control fails for the state variables, but still maintains the need for
relatively few Jacobian updates and factorizations.

Software packages incorporating the ideas described above include:

DASPK – (Maly and Petzold, 1996) Extension of DASSL for sensitivity ana-
lysis. The package includes all three methods described above with an
option for full or partial error control.

CVODES – (Hindmarsh and Serban, 2002) Package for sensitivity analysis of
ODEs. Employs a BDF method for stiff problems and an Adams-Moulton
method for non-stiff problems. The package includes all three methods
described above with an option for full or partial error control.

ODESSA – (Leis and Kramer, 1988) Extension of LSODE for sensitivity ana-
lysis. Uses the staggered direct method with an option for full or partial
error control.

ESDIRK34 – (Kristensen et al., 2004a) Based on one-step method of the
Runge-Kutta family. Uses the staggered direct method with partial error
control.

46 Numerical Solution of the Model Equations

sLIMEX – (Schlegel et al., 2004) Based on one-step extrapolation method.
Uses the simultaneous corrector method with an option for full or partial
error control.

The work of Caracotsios and Stewart (1985) and Feehery et al. (1997) on
the staggered direct and the staggered corrector methods, respectively, was
also based on the DASSL code. The ESDIRK34 code was described in Sec-
tion 3.1.1.1. The sensitivity method employed is essentially a staggered direct
method, but the numerical implementation differs from the BDF based ap-
proaches. In ESDIRK34 the sensitivities are derived by differentiating the nu-
merical scheme with respect to the initial conditions and parameters (see outline
in Appendix A.1). Efficiency is obtained by reusing the Jacobian ∂f/∂y and its
factorization, which is computed anyway for the integration of the state equa-
tions. Since DASPK solves DAE problems of the more general form (3.10), a
similar reuse of information is not possible. DASPK requires user-implemented
sensitivity equations (although with an option to use automatic differentiation),
whereas ESDIRK34 only requires implementation of the Jacobian and partial
derivatives with respect to parameters, ∂f/∂θ. Further details on implemen-
tation of ESDIRK34 are found in Kristensen et al. (2004a).

Most of the approaches reported in the literature are based on multi-step
methods. As discussed in Section 3.1, one-step methods have an inherent
advantage over multi-step method when frequent discontinuities are present,
since multi-step methods have to revert to low order at each restart of the
integration. A discontinuous solution trajectory arises in parameter estima-
tion problems when a multiple shooting based optimization algorithm is used.
In later parts of this thesis comparison is made between the one-step method
ESDIRK34 and the multi-step method DASPK.

4

Summary

In this thesis a practical approach to parameter estimation is taken empha-
sizing the numerical aspects involved. With some preliminary comments on
different methods of estimation and statistical aspects, the two main elements
of parameter estimation in dynamical systems were discussed: The optimization
algorithm and the differential equation solver. Chapter 2 covered the basic prin-
ciples of unconstrained and constrained optimization focusing on methods for
nonlinear least squares. All the methods presented are gradient-based methods
requiring the gradient of the objective function. Efficient methods for solving
the underlying differential equations and generating gradient information were
discussed in Chapter 3.

Ideally, an optimization algorithm and an equation solver applicable to all pos-
sible problems would be available. This is, however, not the case. Therefore, it
is important to understand the advantages and disadvantages of the individual
algorithms such that a qualified choice of optimizer and differential equation
solver can be made for each desired application. Numerous reports are found in
the literature (e.g. Khorasheh et al., 2002; Issanchou et al., 2003), in which the
numerical algorithms apparently have been applied purely as black boxes with
no particular reasoning regarding the choice of method. The computationally
most intensive task in parameter estimation is the generation of gradient infor-
mation, a task that often seems to suffer from naive approaches, in which the
gradients are either approximated by finite difference schemes or calculated by
solving the sensitivity equations with an off-the-shelf ODE solver, disregarding
the special structure of these equations, and therefore ending up with an inef-
ficient overall algorithm.

In conclusion: Possible improvements still remain in the development of effi-
cient and robust algorithms for parameter estimation in dynamical systems,
particularly regarding the role of the differential equation solver.

48 Summary

Progress Report

5

Benchmarking

The main purpose of this progress report is to assess different methods for
parameter estimation in dynamical systems. As mentioned in the previous re-
port, the optimization algorithm and the differential equation solver are the
essential components required for the practical solution of parameter estima-
tion problems. The performance of different optimization algorithms are com-
pared through benchmark tests. Also, comparison is made between the different
methods for sensitivity computation discussed in Section 3.2.2. Based on these
comparative studies, advantages and disadvantages of the individual approaches
are identified, and progress is made towards an efficient tool applicable to ge-
neral parameter estimation problems in dynamical systems described by ODEs
or DAEs.

In Section 5.1 the individual comparisons are made. The gas-oil cracking prob-
lem introduced in the previous report is used as test example, and simulated
values corrupted with random noise are used as “measurements”. Comparison
is made between three different optimization algorithms with ESDIRK34 as the
differential equation solver. Furthermore, using a general purpose SQP method
the performance of a standard least squares formulation is compared to the
transformed formulation proposed by Schittkowski (1988).

Section 5.2 covers the comparison between the two differential equation solvers:
The Runge-Kutta method ESDIRK34 and the BDF method DASPK. The stag-
gered direct, staggered corrector and simultaneous corrector methods for sensi-
tivity integration are compared, still using the gas-oil cracking problem as test
example.

5.1 Optimizer Performance

The first comparison made is between three different optimization algorithms.
Below the individual algorithms are briefly introduced along with the perfor-
mance characteristics measured in the test. The algorithms are all available as
Fortran codes. Details on implementation of the parameter estimation problems
are given in Appendix A. For this preliminary comparison no alterations are
made to the optimization algorithms, but possible improvements are identified.
The algorithms considered in the test are:

LMDER: This code, which is part of the Minpack package available from the
Netlib repository (www.netlib.org), was first described in Moré (1977).
The code is an implementation of the Levenberg-Marquardt algorithm

52 Benchmarking

(c.f. Section 2.1.3.3) solving the standard nonlinear least squares problem:

min
θ

f(θ) =
1
2
r(θ)T r(θ) (5.1)

in which r : Rnp 7→ Rm is the vector of residual functions. LMDER uses
the subroutine FCN supplied by the user, which calculates the residual
functions and the Jacobian. FCN is called with a flag indicating wether
to calculate the residuals or the Jacobian. When estimating parameters
in systems described by differential equations, it is inefficient to separate
these two tasks, since the information required for the Jacobian calcula-
tion is already present when calculating the residuals. Thus, a modifica-
tion of LMDER is desirable, which is addressed in Chapter 6.

LMDER uses three different termination criteria and it terminates when-
ever one of them is met. The first criterion measures the relative error
of the objective function. Termination occurs if both the actual and the
predicted relative reductions are less than a user specified tolerance ε1.
That is:

f(θ)− f(θ + h)
f(θ)

≤ ε1 and
L(0)− L(h)

L(0)
≤ ε1 (5.2)

in which L(·) is the local linear model used in the Levenberg-Marquardt
algorithm (c.f. Algorithm 1 in Section 2.1.3.3). The second termination
criterion measures the relative error of the desired solution. Termination
occurs when the relative error between two consecutive iterates is at most
ε2:

‖h‖ ≤ ε2 ‖θ‖ (5.3)

Finally, the third termination criterion measures the orthogonality be-
tween the residual vector and the columns of the Jacobian. Termination
occurs when the cosine of the angle between the residual vector and any
column of the Jacobian is at most ε3 in absolute value:

|cos(ϕ)| = |r(θ) · J(θ):,i|
‖r(θ)‖ · ‖J(θ):,i‖ ≤ ε3 (5.4)

in which the notation J(θ):,i denotes the ith column of the Jacobian
and ϕ is the angle between the residual vector and the ith column of
the Jacobian. The inequality (5.4) should hold for all columns of the
Jacobian. This criterion is equivalent to taking the infinity norm of the
gradient of the objective function, J(θ)T r(θ), except from some scaling
by the norms of r(θ) and J(θ):,i.

LMDER allows the user to provide scaling factors for the parameters.
By default the parameters are scaled by the norms of the columns of the
initial Jacobian.

NPSOL: This code (Gill et al., 1986) is designed for minimization of a general
smooth function subject to constraints. It is the only code in the test,
which is not designed specifically for nonlinear least squares problems.

5.1. Optimizer Performance 53

NPSOL solves nonlinear programming problems of the form:

min
θ

f(θ)

s.t. l ≤

θ
ALθ
c(θ)

 ≤ u

(5.5)

in which AL is an mL × np constant matrix defining the general linear
constraints and c(θ) is a vector of dimension mN of nonlinear constraint
functions. That is, simple bound constraints, general linear constraints,
and general nonlinear constraints are treated separately by NPSOL. The
algorithm implemented in NPSOL is an active set SQP method with line
search and BFGS updating. Each major iteration consists of computing
a search direction, determining a step length that produces a sufficient
decrease in an augmented Lagrangian merit function1, and, finally, updat-
ing the approximation to the Hessian of the Lagrangian function. Details
on the algorithm can be found in Gill et al. (1986).

NPSOL uses two subroutines, CONFUN and OBJFUN, provided by the user,
which calculate the nonlinear constraint functions and the objective func-
tion (and its gradient), respectively. Since NPSOL is not designed specif-
ically for nonlinear least squares problems, the special structure of these
problems is not exploited. The first comparison considers application of
NPSOL to a standard formulation of the least squares problem, whereas
the comparison performed in Example 5.2 considers a simple transforma-
tion of the least squares problem as proposed by Schittkowski (1988).

The NPSOL package has a large number of advanced settings, the details
of which are not explained here. NPSOL terminates with an optimal so-
lution if three different criteria are met simultaneously: (i) the sequence
of iterates has converged (criterion similar to (5.3)), (ii) the norm of the
gradient is sufficiently small, and (iii) the norm of the residuals of the
constraints in the predicted active set is small enough. Thus, the mecha-
nism for termination is different from LMDER in that three criteria must
be satisfied at the same time.

NL2SOL: This code, described in Dennis et al. (1981), was developed for non-
linear least squares problems with the specific motivation of developing an
algorithm, which in the large residual case would be more reliable than the
Gauss-Newton or Levenberg-Marquardt methods. NL2SOL solves least
squares problems of the form (5.1). Remembering that the Hessian of the
least squares objective function is:

H = J(θ)T J(θ) +
m∑

i=1

ri(θ)∇2ri(θ) (5.6)

the Gauss-Newton approximation consists of neglecting the second order
terms in (5.6). NL2SOL uses an augmented Gauss-Newton approxima-
tion, in which approximations to the second order terms are included.

1See Nocedal and Wright (1999) for details.

54 Benchmarking

Thus, the resulting overall approximation is:

B = JT J + S (5.7)

In each iteration S is updated by adding a correction term containing
information about the problem at the new point. By keeping an approxi-
mation to the second order terms of the Hessian, improved performance
is achieved on problems with large residuals or strong nonlinearities.

NL2SOL uses two subroutines, CALCR and CALCJ, supplied by the user for
calculation of the residual functions and the Jacobian. Again, this sepa-
ration of the computational tasks is inefficient for parameter estimation
problems in differential equation systems.

Although not as extensive as NPSOL, the NL2SOL package has many
advanced settings that allow the user to tune the optimization algorithm.
Except for the tolerance parameters, default settings (see Dennis et al.,
1981) are used in the comparison. NL2SOL uses five different termination
criteria: absolute function convergence, relative function convergence, θ–
convergence, singular convergence and false convergence. The specific
mechanisms used for the individual criteria to be satisfied are detailed in
Dennis et al. (1981). Relative function convergence and θ–convergence
are comparable to (5.2) and (5.3), respectively. NL2SOL uses a quadratic
model of the objective function in each step of the iteration, so instead of
the linear model used by LMDER in (5.2) a quadratic model is used to
compute the predicted decrease. Absolute function convergence is simply
a measure of the value of the objective function, and termination occurs
with this criterion satisfied if:

f(θ) ≤ ε0 (5.8)

Singular convergence and false convergence are used to accommodate sit-
uations, where none of the previously described tests are satisfied. For
example, false convergence can occur if the specified tolerances are too
strict for the accuracy to which f(θ) and J(θ) are being computed.

Making a fair comparison between the three optimization algorithms just de-
scribed is a difficult task, since differences in, for example, termination criteria
exist. Based on a single test example, it is impossible to draw certain con-
clusions about the advantages and disadvantages of the three algorithms in
question. However, the intention here is not to give a thorough comparison
considering all possible applications, but rather to demonstrate the use of the
algorithms and to provide guidelines for further investigation. In order to give
as detailed a comparison as possible, a number of different performance charac-
teristics are included for the optimizer as well as for the differential equation
solver. Descriptions of the measured quantities are listed in Table 5.1. A few
comments are required: NJAC is the number of evaluations of the Jacobian
required to solve the nonlinear equations arising due to the use of an implicit
integration method (DASPK or ESDIRK34). NJACT is the total number of
Jacobian evaluations, i.e. evaluations required to solve the nonlinear equations

5.1. Optimizer Performance 55

Abbreviation Meaning

NIT Number of major iterations. Iterations performed in an “in-
ner loop” are not included.

NOBJ Number of objective function evaluations.
NGRD Number of gradient evaluations.

NSTEP Total number of integration steps (successful + rejected).
NFUN Number of function evaluations.
NJAC Number of Jacobian evaluations due to nonlinear iterations.
NJACT Total number of Jacobian evaluations, i.e. evaluations for

iteration matrices and for sensitivity residuals.
NLU Number of LU factorizations.
NBACK Number of back substitutions.
NSENS Number of right hand side evaluations of sensitivity equa-

tions.

CPU Time The CPU time (measured in seconds) applies to an average
of 100 runs on a 450MHz AMD K6-2 computer. The time is
measured using the function CPU TIME, which is part of the
Compaq Visual Fortran compiler.

NCLOCK Total number of clock cycles required (millions).

Table 5.1. Performance characteristics measured in the benchmark tests. The first
section of the table holds characteristic quantities for the optimizer, the second
section holds characteristics for the equation solver (accumulated values for all calls
made to the equation solver during optimization), whereas the last two entries relate
to the overall performance. Not all quantities are reported in each comparison.

plus evaluations required when computing the right-hand-side of the sensitiv-
ity equations2. The CPU time is measured with the function CPU TIME, which
is part of the Compaq Visual Fortran compiler. Simple tests show that this
measurement is subject to “noise”, so the reported value is an average of 100
runs. Furthermore, the total number of clock cycles is listed, which allows for
a validation of the CPU time measurement.
In the following example a comparison is made between LMDER, NPSOL and
NL2SOL:

Example 5.1 (Performance Comparison Between Optimization Algorithms)
The gas-oil cracking problem encountered several times in the previous report is used
again as test example:

[
ẏ1

ẏ2

]
=

[−(k1 + k3)y2
1

k1y
2
1 − k2y2

]
,

[
y1(0)
y2(0)

]
=

[
1
0

]
(5.9)

This time all three parameters are estimated. The initial conditions are assumed to be
known without error. “Measurements” are obtained at 10 equidistant points in time
by simulation using the following parameter values:

k1 = 12, k2 = 8, k3 = 8 (5.10)

2In ESDIRK34 NJAC and NAJCT are the same, which is not the case in DASPK.

56 Benchmarking

The data are perturbed with random noise drawn from a normal distribution with
zero mean and variance σ2 = 0.052. The data are plotted in Figure 5.1 along with
the solution trajectories corresponding to the optimal parameters computed in the
optimization and the trajectories corresponding to the original parameters (5.10).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

y 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

y 2

Time

Original parameters
Estimates
Measurements

Figure 5.1. Measurements plotted along with the solution trajectories computed
using the original and the optimal parameters, respectively. The parameter set
from LMDER was used.

The least squares problem may now be formulated as:

min
θ

f(θ) =
1
2

2∑

j=1

10∑

i=1

w2
ij (yj(ti, θ)− ỹij)

2 (5.11)

Each residual function has an associated weight. In this comparison all weights are
chosen to 1. The differential equations are solved using ESDIRK34 with the absolute
and relative tolerances set to 10−6. The choice of tolerance in the equation solver is
studied in much more detail in Chapter 6. ESDIRK34 uses the staggered direct method
for calculating the sensitivities. The sensitivity equations need not be implemented
directly, only the Jacobian and the partial derivatives with respect to the parameters
must be specified:

df

dy
=

[−2(k1 + k3)y1 0
2k1y1 −k2

]
,

df

dθ
=

[−y2
1 0 −y2

1

y2
1 −y2 0

]
(5.12)

The tolerance parameters in the individual optimization algorithms are as far as possi-
ble specified such that the same accuracy is required in the solution for each algorithm.
For LMDER ε1 = ε2 = ε3 = 10−4 in (5.2)–(5.4). The relative function convergence and
θ-convergence in NL2SOL are set to 10−4, and in NPSOL the criteria corresponding
to (5.3) and (5.4) are both set to 10−4 3.

3Due to the particular implementation of the termination criteria, the setting “Optimality
Tolerance” must be set to 10−8 (see Gill et al., 1986).

5.1. Optimizer Performance 57

Code LMDER NPSOL NL2SOL

NIT 7 36 7
NOBJ 8 37 8
NGRD 7 37 8

NSTEP 791 2058 836
NFAIL 0 0 0
NFUN 8998 23503 9524
NJAC 791 2058 836
NLU 791 2058 836
NBACK 7570 23133 8110

f(θ∗) 0.177566 · 10−1 0.177569 · 10−1 0.177568 · 10−1

k1 11.6866 11.7382 11.7323
k2 5.8897 5.9314 5.9284
k3 10.3454 10.3002 10.3029

CPU Time 0.215 0.591 0.220
NCLOCK 101.3 328.0 103.0

Table 5.2. Performance statistics for three different optimization algorithms when ap-
plied to the parameter estimation problem in the gas-oil cracking model. ESDIRK34
was used for solving the equations and generating gradient information.

Internal scaling is allowed in all algorithms. The following starting guesses for the
parameters are provided:

θ0 =

k1

k2

k3

 =

1
1
1

 (5.13)

The performance statistics for the three optimization algorithms are summarized in
Table 5.2. LMDER and NL2SOL terminate with the relative function convergence cri-
terion satisfied, whereas all criteria are satisfied in NPSOL (condition for termination).
The most distinctive feature of Table 5.2 is the apparent inefficiency of NPSOL com-
pared to LMDER and NL2SOL. All statistics for LMDER and NL2SOL are compara-
ble. All three final objective functions share the first 5 decimals in common suggesting
that the relative accuracy required has been achieved. Small differences exist in the
parameter estimates, probably caused by correlation of the parameters as seen from
Table 5.3, which shows a fairly strong correlation between k1 and k2 and between k2

and k3. The estimated values of the parameters differ from the true parameter values.
Further experiments show that the true parameter values are approached, as expected,
if the variance of the measurement errors is reduced.

k1 k2 k3

k1 1.000
k2 0.718 1.000
k3 -0.552 -0.774 1.000

Table 5.3. Estimated correlation matrix for the parameters. The estimates are based
on the final Jacobian and objective function returned from LMDER.

58 Benchmarking

Regarding the statistics for the equation solver, one particular observation is made.
Although NPSOL needs 5 times the number of iterations compared to LMDER and
NL2SOL, the work performed by the equation solver is only increased by a factor of
about 2.5. The reason behind this is that NPSOL, unlike the two other algorithms,
evaluates the objective function and its gradient during one call to the user supplied
subroutine. As mentioned earlier, this is a desirable property, since the information
required for solving the sensitivity equations is already available during the solution of
the system equations.

The poor performance of NPSOL is expected since it is not designed specifically for least
squares problems, and hence does not exploit the special structure of the least squares
objective function. Compared to LMDER and NL2SOL, the initial approximation to
the Hessian does not resemble the actual Hessian and poorer performance is therefore
expected. A simple transformation, however, of the least squares problem into a general
NLP problem will improve the efficiency of the SQP approach as illustrated in the next
example. ¥

The above example showed that straightforward application of a general pur-
pose SQP method to a least squares problem can be inefficient. In Section
2.2.2 a simple transformation proposed by Schittkowski (1988) was briefly in-
troduced. Proceeding from the unconstrained least squares problem:

min
θ

f(θ) =
1
2

m∑

i=1

r2
i (θ) (5.14)

the transformation consists of introducing m additional variables z = [z1, . . . , zm]T

and m equality constraints of the form:

ri(θ)− zi = 0, i = 1, . . . ,m (5.15)

The transformed problem then reads:

min
θ̄

1
2
zT z

s.t. r(θ)− z = 0

(5.16)

in which θ̄ = [θ, z]T ∈ Rnp+m. Thus, the parameter vector has been augmented
with m additional elements that must be estimated along with the original
parameters. Intuitively, it might seem strange to increase the complexity of
the problem in this way, but Schittkowski (1988) shows that the computational
requirements are comparable to tailored least squares codes. Applying an SQP
method to (5.16), the QP subproblem may be written as:

min
h̄

1
2
h̄

T∇2
θ̄
L(θ̄, λ)h̄ +∇f̄(θ̄)T h̄

s.t. ∇c̄(θ̄)h̄ + c̄(θ̄) = 0

(5.17)

in which h̄ = [h, d]T denotes the computed direction in θ and z, f̄(θ̄) = 1
2zT z

and c̄(θ̄) = r(θ)− z. The bar is introduced to avoid confusion with the notation
of Section 2.2.2. In practice, an approximation is used for the Hessian of the
Lagrangian function in (5.17). The Lagrangian function is defined as:

L(θ̄, λ) = f̄(θ̄)− λT c̄(θ̄)

=
1
2
zT z − λT (r(θ)− z)

(5.18)

5.1. Optimizer Performance 59

The first and second derivatives with respect to θ̄ are:

∇θ̄L(θ̄,λ) =
[−∇r(θ)λ

z + λ

]
, ∇2

θ̄
L(θ̄, λ) =

[
S(θ) 0

0 I

]
(5.19)

in which:

S(θ) = −
m∑

i=1

λi∇2ri(θ) (5.20)

With this structure of the Hessian matrix, the following approximation seems
reasonable:

B =
[
S 0
0 I

]
(5.21)

in which S ∈ Rnp×np is a positive definite approximation to S(θ). Replacing
the actual Hessian in (5.17) with this approximation gives:

min
h,d

1
2
hT Sh +

1
2
dT d + zT d

s.t. ∇r(θ)T h− d + r(θ)− z = 0

(5.22)

It is readily shown that the minimization problem (5.22) is equivalent to the
linear system: (∇r(θ)∇r(θ)T + S

)
h +∇r(θ)r(θ) = 0 (5.23)

If S is equal to S(θ) in (5.20), then solving (5.23) is identical to performing
one Newton step in the solution of the standard least squares problem (5.14)4.
That is, one SQP iteration with S = S(θ) is equivalent to one Newton step in
the solution of (5.14). It is noted that S(θ) in (5.20) coincides with the second
order terms in the Hessian (5.6) at an optimal solution, since r(θ) = z = −λ. In
practice, a quasi-Newton updating scheme is used to update the Hessian. Since
S is an approximation to the second order terms in the Hessian, Schittkowski
(1988) suggests initializing the approximation with:

B0 =
[
µI 0
0 I

]
(5.24)

in which µ is chosen small, if small residuals are expected, or close to one if
large residuals are expected. This allows the user to bring in information about
the problem. Thus, by introducing a simple transformation and applying a
general purpose SQP method, typical features of tailored least squares codes
are retained, i.e. the combination of a Gauss-Newton search direction with a
quasi-Newton correction (as in NL2SOL).

Example 5.2 (Comparing Two Formulations of the Least Squares Problem)
In this example a comparison is made between the standard formulation of the least
squares problem and the transformed NLP formulation. The same setup is used as in
Example 5.1. The NLP problem may be expressed as:

min
θ,z

f(θ̄) =
1
2

20∑

i=1

z2
i

s.t. yj(ti, θ)− ỹij − z10(j−1)+i = 0, i = 1, . . . , 10, j = 1, 2

(5.25)

4Note that J(θ) = ∇r(θ)T .

60 Benchmarking

With this transformed problem, the objective function and its gradient are evaluated
at a very low cost. The gradient is simply given by:

∇f(θ̄) =
[
0 0 0 z1 · · · z20

]T (5.26)

All computational work lies in the evaluation of the nonlinear constraints and the
constraint gradients. The Jacobian, Jc(θ̄), of the constraint functions is:

Jc(θ̄) =

∂y1(t1, θ)
∂k1

∂y1(t1,θ)
∂k2

∂y1(t1, θ)
∂k3

−1 0 · · · 0

∂y1(t2, θ)
∂k1

∂y1(t2,θ)
∂k2

∂y1(t2, θ)
∂k3

0 −1 · · · 0

...
...

...
...

. . .
...

∂y2(t10,θ)
∂k1

∂y2(t10, θ)
∂k2

∂y2(t10,θ)
∂k3

0 · · · 0 −1

(5.27)

A feasible starting point for the optimization is obtained by setting z0 = r(θ0). The
nonlinear feasibility tolerance in NPSOL is set to 10−4. The “warm start” option is
used supplying an initial Hessian approximation of the form (5.21) (a few test runs
indicate that µ = 10−4 is a reasonable choice). All other settings are unchanged from
the previous example.

Formulation Standard Transformed

NIT 36 10
NOBJ 37 11
NGRD 37 11

NSTEP 2058 600
NFAIL 0 0
NFUN 23503 6834
NJAC 2058 600
NLU 2058 600
NBACK 23133 6714

f(θ∗) 0.177569 · 10−1 0.177569 · 10−1

k1 11.7382 11.7381
k2 5.9314 5.9313
k3 10.3002 10.3006

CPU Time 0.591 0.272
NCLOCK 328.0 124.1

Table 5.4. Performance statistics for NPSOL applied to the parameter estimation
problem in the gas-oil cracking model. Comparison is made between a standard
least squares formulation and the NLP formulation proposed by Schittkowski (1988).
ESDIRK34 was used for solving the equations and generating gradient information.

Table 5.4 shows the computational statistics for the comparison. Almost identical
solutions are obtained, but the NLP formulation requires only 10 iterations compared
to 36 using the standard formulation. Thus, substantial improvements are possible by
introducing the simple transformation, which retains typical features of special purpose
least squares codes. The performance using the NLP formulation is fully comparable
to the performance of LMDER and NL2SOL (c.f. Table 5.2). ¥

5.2. Sensitivity Computation 61

The conclusions from Example 5.1 and 5.2 are highlighted below:

• All CPU times listed are insignificant for practical applications, so, basi-
cally, any of the three algorithms would be satisfactory. For larger prob-
lems, however, it is inadvisable to use NPSOL with a standard formulation
of the least squares problem.

• LMDER and NL2SOL show comparable performance, but the codes are
not tailored for problems described by differential equations in that they
separate the evaluation of the residual functions and the Jacobian of
the residual functions. A modification is desirable. Of all three codes,
LMDER is by far the least complex and therefore relatively easy to modi-
fy.

• The NLP formulation of the least squares problem using NPSOL seems
promising. The performance is comparable to special purpose codes. Al-
though the complexity of the problem is increased, the important advan-
tage is that additional constraints can be handled. Often, for reasons of
robustness, it is desirable to introduce simple bound constraints on the
parameters.

In addition to the above, potential savings are expected if an adaptive scheme is
used to adjust the tolerance in the equation solver. When far from the optimal
solution a crude approximation to the solution of the differential equations
would be sufficient. Then, when progress is made towards the solution, the
accuracy in the approximation is increased.

5.2 Sensitivity Computation

Since the computationally dominating tasks in parameter estimation problems
are the repeated solution of the differential equations and, especially, the gene-
ration of gradient information, efficient algorithms for these tasks are crucial to
the overall performance. This section compares the performance of the codes
DASPK and ESDIRK34, both of which were described in Section 3.1. The
characteristics of the two codes are summarized below:

ESDIRK34 : This code implements a 3rd order semi-implicit Runge-Kutta
method with a 4th order embedded method for error estimation. Systems
of DAEs of index up to 1 are treated. Sensitivities are calculated using the
staggered direct method with partial error control (only state variables).

DASPK : This code implements a variable order BDF method. Systems of
DAEs of index up to 2 are treated. Sensitivities are calculated using any
of the methods previously described, i.e. staggered direct, staggered cor-
rector or simultaneous corrector. All sensitivity algorithms have an option
for including sensitivity variables in the error test (full error control).

Compared to ESDIRK34, DASPK is a much larger package that treats a more
general class of problems. In addition, a number of advanced features are

62 Benchmarking

included such as an iterative solver for the linear system and an option for use
of automatic differentiation. These features are, however, not considered in this
test.

Example 5.3 (Performance Comparison of Sensitivity Algorithms)
ESDIRK34 and DASPK are applied to the parameter estimation problem in the gas-oil
cracking model using LMDER for the optimization. Again, the same setup is used as
in Example 5.1. Since DASPK treats problems of the form:

F (t,y, ẏ) = 0

y(t0) = y0

ẏ(t0) = ẏ0

(5.28)

the user supplied subroutine must return the residual of each equation (including the
sensitivity equations). An option exists to perform an initial consistency calculation
internally, but this option is not used in order to avoid confusing the performance
statistics. Instead, a separate subroutine is used to make the equations consistent.

All tolerance parameters in LMDER are set to 10−4, and the relative and absolute
tolerances in ESDIRK34 and DASPK are set to 10−6. Collected statistics for the
comparison are shown in Table 5.5. The simultaneous corrector method in DASPK
fails to produce any results. LMDER terminates after two iterations claiming that no
progress can be made. Closer inspection reveals that the initial sensitivity trajectories
are completely wrong. The integration process seems unstable. DASPK is a very
extensive code, so no further investigations are carried out.

Looking at the statistics in Table 5.5, various observations are made. In general,
ESDIRK34 needs more function evaluations, but fewer Jacobian evaluations than
DASPK. ESDIRK34 reuses the information obtained during state integration when
evaluating right-hand-sides of the sensitivity equations, which is not the case for DASPK.
This difference is reflected in the numbers for NJAC and NJACT.

When estimating parameters in large scale systems, the LU factorizations are expected
to dominate, since these are the only O (

n3
)

operations performed, n being the dimen-
sion of the system. In fact, this is part of the motivation behind the staggered corrector
method. As seen from the table, this method requires only a small number of LU fac-
torizations. Since the Jacobian is not re-evaluated and factorized in each integration
step, the staggered corrector method relies on a Newton iteration to converge the lin-
ear sensitivity equations. For the small scale example considered here, the differences
between the staggered direct and staggered corrector methods in terms of computa-
tional efficiency are negligible. Interestingly, it is observed that, although the staggered
corrector method applies an iterative scheme to the sensitivity equations, on average
convergence is obtained with only one iteration (compare NSTEP and NSENS).

Regarding full or partial error control, the test results show only minor differences
between the two strategies. One could argue that including the sensitivity variables
in the error test would improve the robustness of the overall algorithm. As mentioned
earlier, the sensitivity equations inherit the stiffness character of the state equations,
so it seems fair to assume that the errors incurred in the integration of the sensitivity
equations are of comparable size to the integration errors incurred in the state equa-
tions, thereby rendering the extra error test on sensitivity variables unnecessary. The
statistics in Table 5.5 support this assumption showing that full error control has only a
small impact on the total number of integration steps and error test failures. However,
more test examples are needed in order to draw any certain conclusions. ¥

5.2. Sensitivity Computation 63

C
od

e
D

A
S
P

K
E
S
D

IR
K

34

M
et

ho
d

St
ag

ge
re

d
di

re
ct

St
ag

ge
re

d
co

rr
ec

to
r

St
ag

ge
re

d
di

re
ct

E
rr

or
co

nt
ro

l
Fu

ll
P
ar

ti
al

Fu
ll

P
ar

ti
al

P
ar

ti
al

N
IT

8
8

8
8

7
N

O
B

J
9

9
9

9
8

N
G

R
D

8
8

8
8

7

N
ST

E
P

17
39

17
27

17
91

17
59

79
1

N
FA

IL
22

20
30

30
0

N
F
U

N
38

45
38

09
39

32
38

46
89

98
N

JA
C

17
61

17
47

34
9

35
5

79
1

N
JA

C
T

35
00

34
74

21
50

21
24

79
1

N
SE

N
S

17
39

17
27

18
01

17
69

79
1

N
L
U

17
61

17
47

34
9

35
5

79
1

N
B

A
C

K
73

23
72

63
75

34
73

84
75

70

f
(θ

∗)
0.

17
75

65
·1

0−
1

0.
17

75
65
·1

0−
1

0.
17

75
65
·1

0−
1

0.
17

75
65
·1

0−
1

0.
17

75
66
·1

0−
1

k
1

11
.6

73
7

11
.6

73
7

11
.6

73
7

11
.6

73
7

11
.6

86
6

k
2

5.
89

30
5.

89
30

5.
89

30
5.

89
30

5.
88

97
k

3
10

.3
47

6
10

.3
47

6
10

.3
47

6
10

.3
47

7
10

.3
45

4

C
P

U
T

im
e

0.
26

1
0.

24
7

0.
26

0
0.

24
0

0.
21

5
N

C
L
O

C
K

12
3.

6
11

3.
7

12
2.

8
11

1.
1

10
1.

3

T
ab

le
5.

5.
P
er

fo
rm

an
ce

st
at

is
ti

cs
fo

r
L
M

D
E

R
ap

pl
ie

d
to

th
e

pa
ra

m
et

er
es

ti
m

at
io

n
pr

ob
le

m
in

th
e

ga
s-

oi
lc

ra
ck

in
g

m
od

el
.

C
om

pa
ri

so
n

is
m

ad
e

be
tw

ee
n

di
ffe

re
nt

m
et

ho
ds

fo
r

so
lv

in
g

th
e

di
ffe

re
nt

ia
l
eq

ua
ti

on
s

an
d

ge
ne

ra
ti

ng
gr

ad
ie

nt
in

fo
rm

at
io

n.

64 Benchmarking

In summary: The differences in performance among the different sensitivity
methods are negligible. DASPK has three sensitivity methods to choose from,
one of which failed on this simple example. In general, the DASPK package has
many advanced features, which make it suitable for a wide range of problems.
ESDIRK34, on the other hand, implements only the staggered direct method,
but the implementation is simple, easy to modify and works efficiently. For
many typical parameter estimation problems ESDIRK34 would be an adequate
choice.

6

PARFIT (I) :
Design Considerations and

Initial Development

Based on the comparative study of the previous chapter, the aim of this chapter
is to address some of the potential difficulties arising when estimating parame-
ters in dynamical systems and to make progress towards an efficient tool appli-
cable to general parameter estimation problems in systems described by DAEs.
To facilitate the process of switching between different models and testing dif-
ferent parameter estimation scenarios, effort is put into developing a routine
(PARFIT) for parameter estimation that basically acts as an interface to the
optimization algorithm and the differential equation solver, but allows for easy
switching between models. In addition, the routine implements an option for
adaptive tolerance selection as discussed in the following. The work initiated
in this chapter is continued in the final report.

6.1 A Tool for DAE Parameter Estimation

The benchmark tests in Examples 5.1, 5.2 and 5.3 showed comparable per-
formance of LMDER, NL2SOL and NPSOL using the NLP formulation of the
problem. Furthermore, no considerable differences were observed in overall per-
formance between the different sensitivity algorithms. Basing any conclusions
on a single, fairly well behaved example is questionable. It seems fair to argue
in favour of NPSOL in terms of robustness, since the algorithm handles con-
straints on the parameters. A combination of NPSOL for the optimization and
DASPK for the state and sensitivity integration would provide an extensive
framework capable of handling a wide range of problems. The main drawback
of this approach, however, is that NPSOL and DASPK are both extremely com-
plicated algorithms consisting of thousands of lines of code. To provide more
flexibility in terms of being able to modify the algorithms, a decision is made
here to base the PARFIT routine on LMDER and ESDIRK34, both of which
are compact codes, which are easy to read.

To explain the considerations made when developing PARFIT, some of the
potential difficulties frequently encountered in parameter estimation problems
are briefly discussed. Schittkowski (2002) lists the following reasons why least
squares algorithms sometimes slow down convergence or even terminate unsuc-
cessfully:

66 PARFIT (I) : Design Considerations and Initial Development

• Overdetermined parameter sets.

• Internal round-off errors.

• Badly scaled parameters.

• Approximation errors in fitting criteria.

• Measurement errors in experimental data.

• Bad starting guesses.

In realistic problems many of these complications are present at the same time
making the parameter estimation problem a nontrivial task. Errors in expe-
rimental data are always present, and parameters are often badly scaled (e.g.
kinetic rate constants often differ by several orders of magnitude). Also com-
mon are overdetermined parameter sets, meaning that insufficient information
is available in the data to identify the parameters uniquely resulting in high
correlation between the parameters. Especially for systems described by differ-
ential equations, for which numerical solutions are required, the fitting criteria
are subject to approximation errors. The influence of these errors is investigated
in the next subsection. Finally, the user may provide starting guesses that are
too far from the optimal solution causing the optimizer to progress extremely
slowly or terminate unsuccessfully. As mentioned in the literature review, bad
starting guesses may also cause stiffness of the model equations even though
the equations are non-stiff with the optimal parameters.

It is probably debatable who is responsible for which of the “trouble makers”
listed above, or more importantly, who should do something about it: The
model maker building the mathematical models, the experimentalist carrying
out the experiments, or the numerical analyst designing the parameter estima-
tion software. From a numerical analyst’s point of view it seems reasonable
to concentrate on round-off errors, scaling of parameters and approximation
errors in fitting criteria. Measurement errors are inevitable, so the software
must be able to handle noisy data. Poor starting guesses are impossible to
guard against, but measures exist to reduce the influence of such guesses (c.f.
multiple shooting).

6.1.1 Approximation Errors in Fitting Criteria

Dynamical systems require the repeated numerical solution of a system of dif-
ferential equations. However, the accuracy in the approximate solution is under
the disposal of the user. Inaccurate state variables and sensitivities will affect
the optimization process and may lead to an unsuccessful termination. Since the
main bulk of computational labour in DAE parameter estimation is expended
solving the differential equations and calculating derivative information, con-
trolling the integration accuracy is one of the key challenges. Too accurate
integration will slow down computation, whereas inaccurate integration may
prevent a successful optimization. The accuracy requirement will probably also
vary during the optimization. When far from the optimal solution, a crude ap-
proximation to the state and sensitivity variables may be sufficient. Then, when

6.1. A Tool for DAE Parameter Estimation 67

the optimal solution is approached, higher accuracy is required. This suggests
using an adaptive strategy to adjust the tolerance in the equation solver.
Before addressing the tolerance selection strategy implemented in PARFIT, an
example is given demonstrating the effect of integration accuracy on the optimal
solution.

Example 6.1 (Influence of Integration Accuracy on Optimization)
Consider the parameter estimation problem in the gas-oil cracking model. Unlike the
previous examples, exact experimental data are used generated with k1 = 12, k2 = 8
and k3 = 8. LMDER is started with θ0 = [50 1 0.01]T and all tolerance parameters set
to 10−4. The differential equations are solved using ESDIRK34 with varying tolerance
(absolute and relative tolerances are set equal).

Tolerance 10−1 10−2 10−3 10−4 10−6

NOBJ 25 19 16 13 12
NGRD 25 19 16 13 12

f(θ∗) 0.52 · 10−5 0.48 · 10−6 0.75 · 10−7 0.28 · 10−8 0.23 · 10−10

k1 11.5458 11.8442 11.9213 11.9798 11.9990
k2 7.9010 7.9672 7.9859 7.9972 7.9998
k3 8.0991 8.0377 8.0183 8.0029 8.0001

Table 6.1. Performance results for LMDER and ESDIRK34 using fixed optimization
tolerance, but varying absolute and relative tolerance in the equation solver.

Table 6.1 contains parameter values, final objective function value, the number of
objective function evaluations, and the number of gradient evaluations1. All optimiza-
tions terminate successfully with the termination criterion (5.3) satisfied. Even with a
very loose tolerance in ESDIRK34, the true solution is approached. The numbers for
NOBJ and NGRD decrease with increasing accuracy. Even though the true solution is
approached in each situation, the results indicate that small changes to the accuracy of
the state and sensitivity variables cause the optimization algorithm to follow a different
path of execution. Thus, it seems fair to imagine that in a less well behaved example
a too loose tolerance may prevent a successful optimization.

Although well behaved, a scenario is easily constructed that, regardless of the tol-
erance specified, causes an unsuccessful optimization. For example, starting with
θ0 = [1 50 1]T produces an error from ESDIRK34 in the first iteration saying that the
stepsize has been reduced below the minimum limit. Inspection reveals that LMDER
in the inner loop of the first iteration calls the objective function subroutine with the
parameter vector θ = [−27.27 50 1]T . With these parameters the system has a positive
eigenvalue, which forces the stepsize down in ESDIRK34. Introducing a logarithmic
transformation of all parameters prevents negative parameter values.

As will be explained in much more detail in Appendix A ESDIRK34 calculates sen-
sitivities, which are approximations compared to the integration scheme used for the
state integration. Table 6.1 shows the effect of varying integration tolerance on the op-
timal parameter estimates, but the influence of approximation errors in the sensitivity
variables alone cannot be distinguished. Therefore, a comparison is made in which the
sensitivity equations are integrated exactly2. The result is shown in Table 6.2. In all

1LMDER has been modified to perform a gradient evaluation whenever the objective func-
tion is evaluated. This modification is explained later.

2That is, the integration is exact based on the integration scheme applied to the state
equations.

68 PARFIT (I) : Design Considerations and Initial Development

Tolerance 10−4 10−6

Sensitivities Exact Approximate Exact Approximate

NOBJ 11 13 10 12
NGRD 11 13 10 12

f(θ∗) 0.59 · 10−8 0.28 · 10−8 0.51 · 10−10 0.23 · 10−10

k1 11.9724 11.9798 11.9985 11.9990
k2 7.9958 7.9972 7.9997 7.9998
k3 8.0049 8.0029 8.0001 8.0001

Table 6.2. Performance results for LMDER and ESDIRK34 using fixed optimization
tolerance (10−4), but varying absolute and relative tolerance in the equation solver.
Comparison is made between the approximate sensitivities calculated by ESDIRK34
and the exact sensitivities obtained by integrating the sensitivity equations directly.

cases the optimization terminates with the criterion (5.3) satisfied. Using exact sensi-
tivities the number of iterations is slightly reduced. Considering the higher objective
function value obtained with the exact sensitivities, this difference seems negligible. ¥

It seems an appealing idea to use a tolerance selection mechanism that tightens
the tolerance when the optimal solution is approached. Of course, there is
a risk that the “extra slack” allowed in the initial phase of optimization will
lead to an unsuccessful termination. Surprisingly little information is found
in the literature on this kind of tolerance adaptation in parameter estimation.
Bock (1983) has a few comments on the subject, noting that, although the
idea seems straightforward, a computationally effective and safe implementation
that works for highly nonlinear as well as for ill-conditioned problems is not
trivial. The simple strategy used in PARFIT consists of making multiple calls
to the optimization algorithm with successively tightening tolerance. If the final
optimization tolerance required by the user is, say, ε = 10−6, then the first call
is made with ε = 10−2. After termination with this tolerance, a second call is
made with ε = 10−4 and, finally, a third call with ε = 10−6. The absolute and
relative tolerances in the equation solver are adapted accordingly. In general,
the optimization interval is divided into ntol subintervals. The optimization
tolerance for the ith subinterval is:

εi = ε
i/ntol

final (6.1)

and the corresponding tolerances for the equation solver are:

atoli = rtoli = scale · εi (6.2)

Numerical experiments suggest that scale = 0.01 is a reasonable value. Details
on implementation of PARFIT are provided in Appendix A. The tolerances
associated with the termination criteria (5.2)–(5.4) are given the default value
10−4. In case the user supplies individual tolerances for the three criteria, the
corresponding equation solver tolerances are scaled according to the minimum
of the optimization tolerances.

6.1. A Tool for DAE Parameter Estimation 69

Example 6.2 (Adaptive Tolerance Selection)
The performance of PARFIT using the tolerance selection mechanism is compared to
the case with fixed tolerances. Again, the gas-oil cracking problem with noisy data is
used as test example (same setup as in Example 5.1). The final optimization tolerance
is 10−4, 2 subintervals are used, and for the fixed tolerance case atol = rtol = 10−6. As
indicated earlier, a modification has been made to LMDER. Originally, the evaluations
of the residual functions and the Jacobian of the residual functions were separated,
but this is inefficient for dynamical systems. Therefore, LMDER has been modified to
perform a Jacobian evaluation whenever the residuals are evaluated. Table 6.3 shows
performance statistics for PARFIT using (i) the original LMDER, (ii) the modified
LMDER, and (iii) the modified LMDER with adaptive tolerance selection.

Various observations are made. The small modification of LMDER doubles the effi-
ciency. Instead of 15 repeated solutions of the differential equations, only 8 are required.
With 2 subintervals the adaptive tolerance strategy reduces the total number of inte-
gration steps by 25%. 7 calls are made to the objective function subroutine with the
loose tolerance and only 2 with the tighter tolerance. It seems fair to assume that the
optimal number of subintervals is problem–dependent. Experiments with this example
indicate that 2 is a reasonable choice. Figure 6.1 shows the number of objective func-
tion evaluations and the corresponding total number of integration steps as a function
of the number of subintervals. Plots are shown for increasing values of the final opti-
mization tolerance. All plots show that the optimal number of subintervals is 2. Too
many subintervals increase the total number of iterations, and hence the number of
integration steps. The relative reduction in the number of integration steps experi-
enced when going from 1 to 2 subintervals is much greater for the tighter tolerances
(compare Figure 6.1a with c or d). Part of the explanation for this observation is that
ESDIRK34, when working at very loose tolerances, has a lower bound on the compu-
tational work, which means that changing the integration tolerance from 10−2 to 10−3

is not comparable to changing it from 10−6 to 10−7.

Finally, some rather irregular behaviour is observed in Figure 6.1d. As mentioned
earlier, small changes in tolerances cause the optimization algorithm to follow a different
path of execution, which might be the reason for the observed behaviour. Also, the

LMDER version Original Modified Adaptive tolerance

NOBJ 8 8 9
NGRD 7 8 9

NSTEP 791 436 320
NFAIL 0 4 2
NFUN 8998 4951 3527
NJAC 791 432 318
NLU 791 436 320
NBACK 7570 4859 3431

f(θ∗) 0.177566 · 10−1 0.177566 · 10−1 0.177569 · 10−1

CPU Time 0.215 0.120 0.112
NCLOCK 101.3 53.6 51.1

Table 6.3. Performance statistics for PARFIT applied to the gas-oil cracking problem.
Comparison is made between the original LMDER (similar to results from Example
5.1), the modified LMDER, and the modified LMDER with an adaptive tolerance
scheme.

70 PARFIT (I) : Design Considerations and Initial Development

1 2 3 4 5 6 7 8 9 10
150

200

250

300

350

400
N

um
be

r
of

 in
te

gr
at

io
n

st
ep

s

1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

16

Number of subintervals

N
um

be
r

of
 o

bj
ec

tiv
e

fu
nc

tio
n

ev
al

ua
tio

ns

(a) εfinal = 10−2.

1 2 3 4 5 6 7 8 9 10
200

400

600

800

N
um

be
r

of
 in

te
gr

at
io

n
st

ep
s

1 2 3 4 5 6 7 8 9 10
5

10

15

20

Number of subintervals

N
um

be
r

of
 o

bj
ec

tiv
e

fu
nc

tio
n

ev
al

ua
tio

ns

(b) εfinal = 10−4.

1 2 3 4 5 6 7 8 9 10
500

1000

1500

2000

2500

Number of subintervals

N
um

be
r

of
 in

te
gr

at
io

n
st

ep
s

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

N
um

be
r

of
 o

bj
ec

tiv
e

fu
nc

tio
n

ev
al

ua
tio

ns

(c) εfinal = 10−6.

1 2 3 4 5 6 7 8 9 10
4000

5000

6000

7000

8000

9000

Number of subintervals

N
um

be
r

of
 in

te
gr

at
io

n
st

ep
s

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

N
um

be
r

of
 o

bj
ec

tiv
e

fu
nc

tio
n

ev
al

ua
tio

ns

(d) εfinal = 10−8.

Figure 6.1. Adaptive tolerance selection. The number of objective function eval-
uations and the corresponding total number of integration steps are plotted as a
function of the number of subintervals. Plots are shown for four different values of
the final optimization tolerance. (¤ : left axis, © : right axis).

figure does not reflect the number of objective function evaluations performed in each
subinterval. The trend seems to be that the majority of the evaluations are performed
with loose tolerances and only a few with the tight tolerances. This is in good agreement
with the convergence properties of the Levenberg-Marquardt method. When close to
the solution, superlinear convergence is expected (for small residual problems). ¥

6.1.2 Scaling of Data and Parameters

PARFIT estimates parameters using a weighted least squares criterion. The
minimization problem is:

min
θ

f(θ) =
1
2

lc∑

j=1

lt∑

i=1

w2
ij (yj(ti, θ)− ỹij)

2 (6.3)

in which lc and lt denote the number of measured components and the number
of experimental time values, respectively. Thus, the total number of measure-
ments is m = lclt. lc components measured at lt experimental times are referred

6.1. A Tool for DAE Parameter Estimation 71

to as a data set. The extension to multiple data sets, which are characterized by
an additional set of independent model variables (e.g. temperature or concen-
tration) is treated in the next report. Each measurement ỹij has an associated
weight wij that must be specified by the user. An obvious reason for intro-
ducing weight factors is the possibility to set wij = 0 if measurement ỹij is not
available. Another reason is that the measured components may have different
physical meanings leading to different dimensions. In this case, Schittkowski
(2002) suggests scaling the residuals by the sum of squares of the corresponding
measurement values:

wij =

(
lt∑

k=1

ỹ2
kj

)−1/2

(6.4)

for j = 1, . . . , lc. If, however, the order of magnitude of the individual measured
components differ within the time interval considered, a more individual scaling
procedure is needed. If large function and measurement values lead to large
residuals, then these values will be fitted better than those with small residuals,
if no scaling is applied. To ensure that all measured values are equally taken
into account, the following scaling can be applied:

wij =
1
|ỹij | (6.5)

for i = 1, . . . , lt and j = 1, . . . , lc. Basically, the choice of scaling depends on
the knowledge about the measurement errors. In PARFIT, individual weight
factors allow the user to choose the type of scaling.

The parameters of a problem also frequently have different dimensions. By
default, the parameters are scaled internally in PARFIT, an option that is
part of the LMDER optimization algorithm. LMDER scales the parameters
according to the norms of the columns of the initial Jacobian of the residual
functions. That is, the ith parameter is scaled by ‖J(θ0):,i‖, in which θ0

denotes the initial guess for the parameter vector. An option exists for the user
to provide scale factors.

6.1.3 The PARFIT Algorithm

The discussion above covered some of the considerations made when developing
PARFIT. Details of implementation as well as code listings including a driver
for the gas-oil cracking problem are given in Appendix A. Current features and
limitations of PARFIT are highlighted below:

• PARFIT estimates problem parameters in index one DAEs. An option
exists for estimating initial conditions in ODE systems.

• An adaptive tolerance selection mechanism is used to improve perfor-
mance.

• Data are scaled using individual weight factors supplied by the user. Pos-
sible scaling strategies are introduced above.

• Parameters are scaled internally. An option exists for user supplied scale
factors.

72 PARFIT (I) : Design Considerations and Initial Development

• The parameter covariance and correlation matrices are computed.

Current limitations, some of which are addressed in the next report, include:

• Multiple data sets are not handled. The extension is fairly straightforward
requiring multiple solutions of the differential equations in each call to the
objective function subroutine. Additional independent model variables
characterizing each data set are introduced.

• The user must provide the Jacobian of the differential equations as well
as the partial derivatives with respect to the parameters being estimated.
Numerical difference approximations or the use of automatic differentia-
tion techniques are possible extensions.

• If the states of the system are not measured directly, the user must modify
the objective function subroutine to account for the measurement equa-
tion.

• The initial conditions for the differential equations are assumed to be in-
dependent from the parameters appearing in the right-hand-side functions
of the DAEs.

• In case of algebraic equations, an auxiliary subroutine must be used to
ensure consistency in the equations. Automatic consistency calculation is
not implemented in the equation solver.

6.2 The Dow Chemicals Problem

The PARFIT algorithm is now tested on a notoriously difficult problem with
real data, which was formulated in 1981 by the Dow Chemical Company. The
problem was distributed to 165 researchers at a conference, but only 5 research
groups submitted acceptable solutions. The results from these groups are pre-
sented and compared in Biegler et al. (1986).

Example 6.3 (The Dow Chemicals Problem)
The parameter estimation problem is based on a kinetic model of an isothermal batch
reactor. The model is described by a system of 10 stiff DAEs with 9 unknown parame-
ters to be estimated. A formulation of the problem and a description of the chemical
background and the assumptions made can be found in Biegler et al. (1986). Here,
only the resulting model equations are presented. The model consists of 6 differential

6.2. The Dow Chemicals Problem 73

equations and 4 algebraic equations:

dy1

dt
= −k2y2y8 (6.6a)

dy2

dt
= −k1y2y6 + k−1y10 − k2y2y8 (6.6b)

dy3

dt
= k2y2y8 + k1y4y6 − 1

2
k−1y9 (6.6c)

dy4

dt
= −k1y4y6 +

1
2
k−1y9 (6.6d)

dy5

dt
= k1y2y6 − k−1y10 (6.6e)

dy6

dt
= −k1y6 (y2 + y4) + k−1 (y10 + 1/2y9) (6.6f)

y7 = − [
Q+

]
+ y6 + y8 + y9 + y10 (6.6g)

y8 =
K2y1

K2 + y7
(6.6h)

y9 =
K3y3

K3 + y7
(6.6i)

y10 =
K1y5

K1 + y7
(6.6j)

The equilibrium constants Ki, i = 1, 2, 3, are assumed to be temperature independent,
whereas the rate constants k1, k−1 and k2 are assumed temperature dependent via
Arrhenius’ law:

ki = αi exp (−Ei/RT) , i = 1,−1, 2 (6.7)

in which αi and Ei denote the preexponential factor and the activation energy, respec-
tively. Thus, the 9 unknown parameters in the original formulation of the problem
are:

θ =
[
α1 E1 α−1 E−1 α2 E2 K1 K2 K3

]T (6.8)

The quantity [Q+] in (6.6g) is a concentration, which is assumed to be constant during
the reactions.

The available data originate from three different experiments, in which the tempera-
ture is varied from experiment to experiment (40◦C, 67◦C and 100◦C). During each
experiment, data from four different components corresponding to the first four ele-
ments of the state vector in (6.6) are observed. Three species are measured and the
measured values are adjusted according to a conservation law. The value of the fourth
component is derived from an additional relation. This history of the data suggests
that the measurements are correlated. The initial conditions corresponding to the low
temperature data set are:

y1(0) = 1.7066
y2(0) = 8.32
y3(0) = 0.01
y4(0) = 0.0
y5(0) = 0.0 (6.9)

y6(0) =
[
Q+

]
= 0.0131

y7(0) = 1/2 ·
(
−K2 +

√
K2

2 + 4K2y1(0)
)

y8(0) = y7(0)
y9(0) = 0.0

y10(0) = 0.0

74 PARFIT (I) : Design Considerations and Initial Development

The initial parameter estimates are given in Table 6.4. The activation energies have

Parameter Value

α1 2.0 · 1013

E1 2.0 · 104

α−1 4.3 · 1015

E−1 2.0 · 104

α2 2.0 · 1013

E2 2.0 · 104

K1 1.0 · 10−17

K2 1.0 · 10−11

K3 1.0 · 10−17

Table 6.4. Initial parameter estimates for the batch reactor problem (Biegler et al.,
1986).

dimension [cal/mol], the equilibrium constants have dimension [mol/kg], and the pre-
exponential factors have dimensions corresponding to the individual rate constants.

Results

In this example a simplified version of the parameter estimation problem is treated.
Instead of estimating Arrhenius parameters, the rate constants k1, k−1 and k2 are
estimated directly from isothermal data. This simplification reduces the number of
parameters to 6. The low temperature data are used for estimation.

Parameter Value Scaled parameter Value

k1 0.219 ln k1 -1.52
k−1 47.15 ln k−1 3.85
k2 0.219 ln k2 -1.52
K1 1.0 · 10−17 lnK1 -39.1
K2 1.0 · 10−11 lnK2 -25.3
K3 1.0 · 10−17 lnK3 -39.1

Table 6.5. Initial parameter estimates for the simplified batch reactor problem. The
scaled parameters used in the estimation are listed in the last column.

The initial parameter estimates for the simplified problem are given in Table 6.5. These
parameters vary by many orders of magnitude. To obtain a better scaling of the
numerical problem, it is preferable to have the parameters within approximately the
same order of magnitude. To achieve this, a logarithmic transformation is introduced.
The transformed parameters are listed in the second part of Table 6.5.

Before attempting a solution, the problem is studied by simulation with the initial
parameter values. Figure 6.2 shows the low temperature data plotted along with the
solution trajectories computed using the initial parameter estimates from Table 6.5.
Sharp changes are observed in the concentration profiles. y1 decreases rapidly to zero
before the species represented by y4 starts to form. These rapid changes also appear in
the sensitivity trajectories, which are shown in Figure 6.3. Looking at the sensitivities,

6.2. The Dow Chemicals Problem 75

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
y 1

Time (hrs)

(a) y1(t).

0 100 200 300 400 500 600 700 800

5.5

6

6.5

7

7.5

8

y 2

Time (hrs)

(b) y2(t).

0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y 3

Time (hrs)

(c) y3(t).

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

y 4

Time (hrs)

(d) y4(t).

Figure 6.2. The low temperature data (¤) are plotted along with the solution
trajectories computed using the initial parameter estimates from Table 6.5.

various observations are made. As expected, no changes in the parameters affect y1

after t ' 80, since y1 has decreased to zero. Before t ' 80, changes in k−1, K1 and
K3 do not affect any of the states. Close inspection shows that changes in K1 and K3

affect y2 and y3 in the same way (the curves for y2 and y3 coincide in Figure 6.3d and
f). In general, sensitivity plots can be of considerable use. The physical interpretation
of the trajectories is, however, not considered here. The following linear relation:

∂y

∂ ln K1
= − ∂y

∂ ln K3
(6.10)

is observed from Figure 6.3d and f. Thus, K1 and K3 cannot be estimated indepen-
dently from data on y(t). Therefore, it is chosen to fix K3 at its initial value.

Having made the preliminary adjustments, the first optimization run is performed
using the default values in PARFIT. PARFIT terminates unsuccessfully with an error
from ESDIRK34 saying that the step length has been decreased below the lower limit.
Previous experience suggests that this behaviour is forced by a poor parameter set
computed by LMDER during optimization, which renders the integration algorithm
unstable. Further inspection reveals that the initial Jacobian of the residuals is rank
deficient leading to a singular Hessian approximation. Thus, an additional linear rela-
tion between the parameter sensitivities seems to exist, which could not be identified

76 PARFIT (I) : Design Considerations and Initial Development

0 200 400 600 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (hrs)

S
en

si
tiv

ity
 w

rt
 ln

 k
1

(a) ∂y
∂ ln k1

.

0 200 400 600 800
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (hrs)

S
en

si
tiv

ity
 w

rt
 ln

 k
2

(b) ∂y
∂ ln k2

.

0 200 400 600 800
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time (hrs)

S
en

si
tiv

ity
 w

rt
 ln

 k
−

1

(c) ∂y
∂ ln k−1

.

0 200 400 600 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (hrs)

S
en

si
tiv

ity
 w

rt
 ln

 K
1

(d) ∂y
∂ ln K1

.

0 200 400 600 800
−2

−1

0

1

2

3

4
x 10

−4

Time (hrs)

S
en

si
tiv

ity
 w

rt
 ln

 K
2

(e) ∂y
∂ ln K2

.

0 200 400 600 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (hrs)

S
en

si
tiv

ity
 w

rt
 ln

 K
3

y
1

y
2

y
3

y
4

(f) ∂y
∂ ln K3

.

Figure 6.3. Sensitivity trajectories with initial parameter values. The plots show
the sensitivities of the first four states in the batch reactor model with respect to
(wrt) the logarithm of the parameters.

from the sensitivity plots. This supposition is supported by the commentary provided
by one of the research groups, whose results are presented in Biegler et al. (1986). The
researchers note a “two-dimensional dependency” among the parameters k−1, K1, K2

and K3. A decision is therefore made also to fix K2 at its initial value during the
optimization.

Using a very conservative value of the parameter controlling the initial step bound
in LMDER, tightening the optimization tolerances to 10−7, and modifying the initial
parameter guesses slightly3, the optimization finally terminates with an acceptable
solution using 15 iterations. The solution trajectories corresponding to the optimal
parameters are plotted in Figure 6.4. The parameters are listed in Table 6.6 along

Parameter Final estimate Marginal confidence interval

ln k1 -1.56 ±4.93 · 10−2

ln k2 -1.46 ±1.85 · 10−2

ln k−1 12.8 ±1.11 · 10−1

lnK1 -38.6 ±3.09 · 10−2

Table 6.6. Final parameter estimates plus 95% marginal confidence intervals.

with 95% confidence intervals, which all seem satisfactory. The correlation matrix is

3The initial guess for K1 was changed to 10−15.

6.2. The Dow Chemicals Problem 77

0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
y 1

Time (hrs)

(a) y1(t).

0 100 200 300 400 500 600 700 800

6

6.5

7

7.5

8

y 2

Time (hrs)

(b) y2(t).

0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1

1.2

y 3

Time (hrs)

(c) y3(t).

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y 4

Time (hrs)

(d) y4(t).

Figure 6.4. Solution trajectories for the batch reactor problem computed using the
optimal parameters from Table 6.6.

given in Table 6.7. The highest correlation is observed between k1 and K1. The final
objective function value is 0.036.

This problem requires a great deal of “tuning” in order to produce acceptable results.
First, a transformation of the parameters was introduced to take care of bad scaling.
Secondly, linear dependencies among the parameters were identified, and the parameter
set subsequently reduced. Finally, adjustments to the optimizer settings were made
and one of the initial parameter guesses was changed. By experimenting a little further,
the following observations are made:

• If the initial guess for K1 is kept at 10−17, the optimizer terminates successfully
after 7 iteration, but at a different optimum with a final objective function value
of 0.201. Inspection of the corresponding solution trajectories shows that only
little progress has been made towards the solution.

• If the optimization tolerance is loosened to 10−6 (or higher), the first step com-
puted by the optimizer causes an unstable system, and termination occurs be-
cause of the integrator taking too small steps. The same happens if the initial
step bound in the optimizer is chosen too large. Allowing extra slack in the
early iterations by using several tolerance intervals is clearly a bad idea in this
problem.

78 PARFIT (I) : Design Considerations and Initial Development

k1 k2 k−1 K1

k1 1.000
k2 -0.557 1.000
k3 -0.136 0.516 1.000
K1 0.761 -0.308 -0.702 1.000

Table 6.7. Estimated correlation matrix for the parameters in the batch reactor
problem.

• If the integrator tolerance is fixed at a very tight level (say 10−9), the opti-
mization tolerance can be loosened to 10−3 and the optimization still terminates
successfully at the optimal solution. This is an interesting observation showing
that the integration accuracy in this problem has great influence on the robust-
ness of the overall algorithm.

• No scaling of the data has been used so far, since all components are measured on
the same scale and no prior knowledge is available regarding the error structure of
the data. Scaling according to (6.4) or (6.5) does not result in any improvements.

Two issues seem to be of concern: The optimizer “gets stuck” and terminates because
of too small steps, or the optimizer produces poor parameter guesses in the initial phase
of optimization, which causes the integrator to fail. The latter seems to be triggered
by a loose integration tolerance.

Indeed, this batch reactor problem possesses many of the undesirable characteristics
discussed in Section 6.1. It is badly scaled, the model equations are stiff, and the initial
parameter set is overdetermined. PARFIT was able to solve the simplified problem
in its standard formulation with 6 differential equations and 4 algebraic equations.
However, a great deal of user intervention was still required to obtain acceptable results.

¥

7

Summary

The purpose of this progress report was to identify and address some of the
key challenges faced when solving parameter estimation problems in dynami-
cal systems. Chapter 5 covered a series of benchmark tests. The performance
of three different optimization algorithms was compared in terms of computa-
tional efficiency by measuring a number performance indicators. The LMDER
and NL2SOL codes showed comparable performance when applied to a simple
test problem with three unknown parameters. By transforming the nonlin-
ear least squares problem into a general nonlinear programming problem, the
NPSOL code was able to solve the test problem just as efficiently as LMDER
and NL2SOL, which, unlike NPSOL, are specifically tailored for least squares
problems. NPSOL has the additional advantage that constraints are handled.

Comparison was also made between two differential equation solvers in terms
of (i) solving the differential equations and (ii) solving the corresponding set of
sensitivity equations. In particular, the staggered direct and staggered corrector
methods for sensitivity integration were compared. The motivation for using the
staggered corrector method is a reduction in the number of LU factorizations
required for the joint state and sensitivity integration. However, for problems of
moderate scale this is insignificant. DASPK and ESDIRK34 were comparable
in performance.

In Chapter 6 effort was put into developing the PARFIT routine based on
LMDER for the optimization and ESDIRK34 for the state and sensitivity in-
tegration. These codes performed satisfactory in the tests, and they are both
compact and easy to modify thereby providing a flexible parameter estimation
routine. Several numerical pitfalls encountered in parameter estimation were
discussed. Of particular interest when estimating parameters in dynamical sys-
tems are the approximation errors incurred in the objective function due to the
numerical solution of the differential equations. Controlling the accuracy in the
state and sensitivity variables is a key issue. Experiments on a batch reactor
problem showed that inaccurate state and sensitivity variables easily prevent
a successful optimization. Unless a tight integration tolerance was used, poor
parameter guesses were computed by the optimizer in the initial iterates, which
ultimately forced the integrator to fail. Achieving both robustness and effi-
ciency in parameter estimation software is not a trivial task. Good results were
obtained on a more “well behaved” example using a simple tolerance selec-
tion mechanism to improve the efficiency. However, the batch reactor example
showed that using loose tolerances in the initial iterations may compromise the
robustness.

80 Summary

Final Report

8

PARFIT (II) :
Efficiency, Robustness

and Flexibility

The primary goal of this final report is to extend the PARFIT algorithm, the
work on which was initiated in the previous report. Based on the experience
gained, a number of extensions are introduced in order to improve the flexibility,
robustness and efficiency of the algorithm.

Sections 8.1–8.4 provide the details of the individual extensions. The previous
report showed that accurate state and sensitivity variables were crucial to the
success of the optimization. Other problems arose due to linear dependencies
among the parameters, which resulted in the optimizer computing poor para-
meter guesses. To improve the robustness in such situations, regularization of
the problem is introduced. An extension is also made to allow multiple data sets
in the estimation. Each data set is characterized by an additional set of inde-
pendent model variables. To account for these variables, PARFIT is equipped
with an input functionality that allows the user to specify several inputs, which
can vary not only between different data sets, but also within each data set.
An example is given demonstrating this functionality.

An important problem for systems containing algebraic equations is the con-
sistent initialization and reinitialization of the algebraic variables. This issue is
addressed in Section 8.4.

This report concludes the thesis and the overall conclusions are presented in
Chapter 9 along with suggestions for future work.

8.1 Multiple Data Sets

Until now, estimation based on only a single data set has been considered. As
introduced earlier, a data set is defined as a set of measurements of lc compo-
nents at lt experimental times, which gives a total of m = lclt measurements.
Often several experiments are performed, in which the same components are
measured, but the experimental conditions are varied between the experiments
(e.g. varying temperature). To incorporate all the available information in the
estimation, the PARFIT algorithm is extended to handle ld different data sets
each containing lc components measured at lkt experimental times where the
superscript ‘k’ refers to the kth data set. That is, it is assumed that each data

84 PARFIT (II) : Efficiency, Robustness and Flexibility

set contains measurements of lc components. If in one experiment a different
number of components are measured, this must be handled by specifying zero
weights for the missing components. Varying experimental conditions are han-
dled by introducing an input vector u ∈ Rnu . For example, in the batch reactor
problem (c.f. Example 6.3) data are available at three different temperatures.
Thus, the temperature is treated as an input, which is constant within each
data set. Each data set must contain the same number of inputs.

Following the notation from Chapter 1, each measurement is characterized as:

(ci, ti, ỹi, ui) , i = 1, . . . , m (8.1)

in which ci indicates which component of the state vector y that has been
measured, ti is the time of the measurement and ỹi is the measured value. ui

does not denote the ith component of the input vector, but the combination of
inputs applying to the ith measurement. PARFIT supports piecewise constant
inputs, which may be of relevance in e.g. fed-batch experiments, in which step
changes are made to the feed flow rate as illustrated in Example 8.2.

The weighted least squares criterion may be formulated as:

min
θ

f(θ) =
1
2

ld∑

k=1

lc∑

j=1

lkt∑

i=1

wk
ij

2
(
yj(ti, θ,uik)− ỹk

ij

)2
(8.2)

Details on implementation are given in Appendix A along with guidelines for
the use of PARFIT.

8.1.1 The Dow Chemicals Problem Revisited

Example 8.1 (The Dow Chemicals Problem Revisited)
Consider again the Dow Chemicals problem from Example 6.3. The model equations
are given by (6.6). Measurements of four concentrations are available at three different
temperatures. In this example all measurements are included in the estimation. The
9 unknown model parameters are:

θ =
[
α1 E1 α−1 E−1 α2 E2 K1 K2 K3

]T (8.3)

The initial conditions are assumed known without error, and the conditions correspon-
ding to the low temperature data are given by (6.9). The initial conditions for the
second and third experiment are:

67◦C:

y1(0) = 1.6497
y2(0) = 8.2262
y3(0) = 0.0104
y4(0) = 0.0017

100◦C:

y1(0) = 1.5608
y2(0) = 8.3546
y3(0) = 0.0082
y4(0) = 0.0086

The initial parameter estimates as provided in Biegler et al. (1986) were listed in Table
6.4. To obtain a better scaling of the problem the activation energies are scaled by a
factor of 1/10000, Ẽi = Ei/10000, and a logarithmic transformation is introduced for

8.1. Multiple Data Sets 85

the equilibrium constants. To reduce the intercorrelation between the parameters in
the rate constants, a reparametrisation of the Arrhenius’ law (6.7) is applied:

ki = αi exp
(
− Ei

RT

)

= k0,i exp
(
−Ei

R

(
1
T
− 1

T0

))
, i = 1,−1, 2

(8.4)

in which:

k0,i = αi exp
(
− Ei

RT0

)

The reference temperature T0 is chosen as the average temperature over all the per-
formed experiments, T0 = 69◦C. The reparametrisation (8.4) does not change the model
responses, but the correlation between the two Arrhenius parameters is reduced.

Parameter Initial estimate Final estimate Marginal confidence interval

ln k0,1 1.194 0.796 ±0.102
ln k0,−1 6.565 27.29 ±19.37
ln k0,2 1.194 1.107 ±0.108
Ẽ1 2.000 1.847 ±0.074
Ẽ−1 2.000 2.636 ±0.078
Ẽ2 2.000 1.882 ±0.028
ln K1 -34.54 -38.76 ±0.024
ln K2 -25.33 -14.26 ±19.48
ln K∗

3 -39.14 -39.14 –

Table 8.1. Initial and final parameter estimates for the batch reactor problem using
data at three different temperatures. A 95% marginal confidence interval is listed
for each parameter. (∗ : fixed during optimization).

As in Example 6.3 K1 and K3 are linearly dependent, and therefore K3 is fixed at
its initial value during the optimization. With a tight optimization tolerance (10−7)
and a conservative initial step bound in the optimizer, the optimization terminates
successfully with the final objective function value 0.2071 using 16 iterations. Since each
iteration requires three consecutive solutions of the DAEs (one for each temperature),
the computations are quite demanding.

The initial and final parameter estimates are listed in Table 8.1 and the optimal solution
trajectories are plotted in Figure 8.1–8.3. Inspection of the plots shows that systematic
errors exist between the data and the model responses, thus the model does not capture
all of the variation in the data. The estimated correlation matrix in Table 8.2 shows
that k0,−1 and K2 are fully correlated, which supports the observation made by one
of the research groups, whose results are presented in Biegler et al. (1986). They
note that only two of the parameters among k0,−1, K1, K2 and K3 can be estimated
independently, which in Example 6.3 led to the decision of fixing K2 in the estimation.
In this case the optimization was successful, but the estimates of k0,−1 and K2 both
have wide confidence intervals.

This problem still poses many of the numerical difficulties observed in Example 6.3.
Loose integration tolerances prevent a successful optimization, and unless the initial
step bound in the optimizer is chosen very small, the first correction computed to the

1The initial guess for K1 was changed to 10−15 as in Example 6.3.

86 PARFIT (II) : Efficiency, Robustness and Flexibility

0 100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y 1

Time (hrs)
0 100 200 300 400 500 600 700 800

5.5

6

6.5

7

7.5

8

y 2

Time (hrs)

0 100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y 3

Time (hrs)
0 100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

y 4

Time (hrs)

Figure 8.1. Experimental measurements and solution trajectories for the batch
reactor problem. The trajectories are computed using the optimal parameters from
Table 8.1. Low temperature data (T = 40◦C).

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y 1

Time (hrs)
0 50 100 150 200 250

5.5

6

6.5

7

7.5

8

y 2

Time (hrs)

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

y 3

Time (hrs)
0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

y 4

Time (hrs)

Figure 8.2. Experimental measurements and solution trajectories for the batch
reactor problem. Medium temperature data (T = 67◦C).

8.1. Multiple Data Sets 87

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y 1

Time (hrs)
0 10 20 30 40 50

6

6.5

7

7.5

8

y 2

Time (hrs)

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y 3

Time (hrs)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

y 4

Time (hrs)

Figure 8.3. Experimental measurements and solution trajectories for the batch
reactor problem. High temperature data (T = 100◦C).

parameter vector causes the integrator to fail. Inspection shows that, with a large step
bound, Ẽ−1 becomes negative after the first iteration. The problem also illustrates that
initial parameter guesses are often far from the optimal solution. The initial estimate
for k0,−1 is a factor of 109 smaller than its final value. The sequence of objective
function values is plotted in Figure 8.4, which shows the slow progress made in the
initial phase of optimization, in which the optimizer takes small steps in the steepest
descent direction.

To conclude this example a comparison is made to the results presented in Biegler et al.
(1986). As mentioned earlier, five research groups submitted acceptable solution. They
tackled the problem in very different ways. Four groups optimized a maximum likeli-
hood criterion using either a full unknown covariance matrix or an unknown diagonal

k0,1 k0,2 k0,−1 E1 E2 E−1 K1 K2

k0,1 1.000
k0,2 0.753 1.000
k0,−1 -0.873 -0.948 1.000
E1 0.879 0.798 -0.887 1.000
E2 -0.163 0.207 0.028 -0.246 1.000
E−1 -0.061 -0.126 0.160 -0.109 0.418 1.000
K1 0.089 -0.258 0.209 -0.160 -0.065 0.051 1.000
K2 -0.873 -0.949 1.000 -0.887 0.026 0.161 0.209 1.000

Table 8.2. Estimated correlation matrix for the parameters. The numerically largest
elements of the correlation matrix are marked in grey (threshold value = 0.9).

88 PARFIT (II) : Efficiency, Robustness and Flexibility

0 2 4 6 8 10 12 14 16
10

−1

10
0

10
1

10
2

Iterates

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Figure 8.4. The value of the objective function plotted as a function of the iteration
number.

covariance matrix, whereas one group used a least squares criterion. Only one group
used the original formulation with 6 differential equations and 4 algebraic equations.
Furthermore, the five approaches differed in the number of parameters optimized, the
number of components regressed, and in the numerical algorithms used for optimization
and differential equation solution. Only two groups computed derivative information
by solving the sensitivity equations, whereas three groups relied on difference approxi-
mations. In general, much effort was put into rearranging the model equations and
transforming the parameters before an optimization was attempted.

The results obtained here are compared to the results of the five research groups in
Table 8.3. Good agreement is observed.

The batch reactor problem was posed by the Dow Chemical Company to review the
state of the art in parameter estimation for reaction engineering problems. Biegler et al.
(1986) conclude that an interactive approach and a great deal of experience is required
to solve difficult parameter estimation problems, and that user friendly software is not
yet available that automatically handles all of the difficulties encountered. Now, 20

Research group no.

Transformed parameter (1) (2) (3) (4) (5) (6)

k1(69◦C) 1.88 1.84 1.94 2.04 2.21 2.22
k2(69◦C) 2.73 2.89 2.38 2.68 2.78 3.02
E1 · 10−3 18.74 18.48 18.84 18.26 17.84 18.47
E2 · 10−3 18.88 19.07 17.87 18.41 18.85 18.81
E3 · 10−3 25.67 26.05 25.15 21.90 25.20 26.36
K1/K3 1.44 1.44 1.42 1.44 1.43 1.46
k−1(69◦C)K3/K2 9.84 10.92 8.52 9.98 10.14 11.12

Table 8.3. Summary of optimal solutions to the batch reactor problem. The results
presented in Biegler et al. (1986) (research groups 1–5) are compared to the results
obtained in this example (research group no. 6).

8.1. Multiple Data Sets 89

years later, computer power has increased dramatically, but estimating parameters in
differential equation systems is still a non-trivial task requiring experience and careful
attention from the user of parameter estimation software. User friendly software is
available (e.g. EASYFIT (Schittkowski, 2002) or gPROMS (Pantelides and Barton,
1993)), but to the knowledge of the author none of the packages automatically handle
the difficulties encountered in e.g. the batch reactor problem. Probably the type of
difficulty most frequently arising in parameter estimation is for the model maker to
“balance” the complexity of the model with the information available in the data such
that all of the parameters can be identified. Thus, obtaining fully automated software
packages that handles all possible scenarios seems an unattainable goal. Parameter
estimation is, inherently, an interactive and iterative process. ¥

8.1.2 A Fed-Batch Fermentation Problem

In the above example the initial conditions were assumed known. In some
systems this is not a realistic assumption and the initial conditions must be es-
timated along with the unknown parameters. For systems described by ODEs,
PARFIT has an option for estimating initial conditions for all data sets. The
extension is straightforward. Since the initial conditions are assumed not to
appear explicitly in the right-hand-side functions of the ODEs, the correspon-
ding sensitivity equations, which must be solved to provide the gradient of the
objective function, take the form:

∂

∂t

∂y

∂y0i
=

∂f

∂y

∂y

∂y0i
,

∂y

∂y0i
(t0) = ei, i = 1, . . . , n (8.5)

in which y0i denotes the initial condition of state yi, and ei denotes the ith unit
vector. The sensitivities with respect to initial conditions are already computed
in ESDIRK34 (see the outline of the sensitivity algorithm in Appendix A.1).
Thus, no extra user intervention is required for initial condition estimation.

Example 8.2 (Parameter Estimation in a Fed-Batch Fermentation Model)
The purpose of this example is to (i) illustrate initial condition estimation in multiple
data sets and (ii) to show a problem with a time-varying input. The problem considered
is a simple model of a fed-batch fermentation process. The problem was studied by
e.g. Kuhlmann et al. (1998) in the context of robust control and by Kristensen (2003)
in the context of parameter estimation in stochastic grey-box models. The process
consists of a stirred tank reactor containing water, substrate and biomass, which is fed
with a stream containing water and substrate. The model describes growth of biomass
on a single substrate with Monod kinetics and substrate inhibition (Kristensen, 2003).
The model equations are:

dX

dt
= µ(S)X − FX

V
(8.6a)

dS

dt
= −µ(S)X

Y
+

F (SF − S)
V

(8.6b)

dV

dt
= F (8.6c)

in which X [g/L] is the biomass concentration, S [g/L] is the substrate concentration,
V [L] is the reactor volume, F [L/h] is the feed flow rate, Y is a yield coefficient and SF

[g/L] is the feed concentration of substrate. The biomass growth rate, µ(S), is given
by the following expression:

µ(S) = µmax
S

K2S2 + S + K1
(8.7)

90 PARFIT (II) : Efficiency, Robustness and Flexibility

in which µmax, K1 and K2 are kinetic parameters. Before considering the parameter
estimation problem, a brief aside is made on optimal operation of the fed-batch fer-
mentation. Kuhlmann et al. (1998) study the problem of optimizing the production of
biomass by manipulating the feed flow rate. The problem is to determine the initial
conditions and the feed flow rate trajectory that gives optimal productivity in terms
of the amount of biomass at the end of the batch. As shown in Kristensen (2003),
the problem can be solved by observing that the productivity is maximized when the
biomass growth rate is maximized, which leads to the following condition:

0 =
dµ(S)

dS
= µmax

K1 −K2S
2

(K2S2 + S + K1)2
⇒ S =

√
K1

K2
= S∗ (8.8)

If the initial substrate concentration is chosen to S0 = S∗, and if the feed flow rate is
chosen such that dS

dt = 0, then S can be kept at S∗:

0 =
dS

dt
= −µ(S0)X

Y
+

F (SF − S0)
V

⇒ F =
µ(S0)XV

Y (SF − S0)
(8.9)

By substituting this expression into (8.6a) and (8.6c), the equations for X and V can
be solved (see Kristensen, 2003):

X =
ac exp(at)

1 + bc exp(at)
(8.10)

V =
1 + bc exp(at)

1 + bc
V0, t ∈ [t0, tf] (8.11)

in which t0 and tf denote the initial and final times, respectively, and:

a = µ(S0), b =
µ(S0)

Y (SF − S0)
, c =

X0

a− bX0

Inserting (8.10) and (8.11) in the expression for the feed flow rate (8.9) gives:

F = bX0V0 exp(at) (8.12)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Time (hrs)

Biomass concentration
Substrate concentration
Reactor volume
Feed flow rate

Figure 8.5. Input trajectory and solution trajectories corresponding to optimal
operation of the fed-batch fermentation.

8.1. Multiple Data Sets 91

Parameter Value

Y 0.5
SF 10g/L
µmax 1h−1

K1 0.03g/L
K2 0.5L/g

Table 8.4. Parameter values for the fed-batch fermentation example. The values
correspond to the values used by Kuhlmann et al. (1998).

Thus, an analytic expression has been derived for the optimal feed flow trajectory. The
solution corresponding to optimal operation is depicted in Figure 8.5. The initial con-
ditions X0 = 1g/L, S0 = S∗ and V0 = 1L are used along with the parameters listed in
Table 8.4. When operated at optimum the growth rate of biomass is constant meaning
that any measurements taken in this state of operation will not contain information
that enables the estimation of the kinetic parameters in (8.7). Thus, to uncover the
dynamics of the system, two simulated identification experiments are performed, in
which the optimal input profile is perturbed with random values drawn from a normal
distribution with zero mean and variance σ2 = 0.25. Measurements are taken at 100
equidistant points in time and added with random noise according to the following
measurement equation:

X̃

S̃

Ṽ

j

=

X
S
V

j

+ εj , εj ∈ N (0, V), V =

0.01 0 0
0 0.001 0
0 0 0.01

 (8.13)

The two experiments are started at different initial conditions. The parameter estima-
tion problem considered here consists of estimating the kinetic parameters µmax and
K1 along with the initial conditions corresponding to each data set. The measure-
ments and perturbed input profiles for the two experiments are plotted in Figure 8.6.
In both experiments the perturbations in the input cause the substrate concentration

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Time (hrs)

Biomass concentration
Substrate concentration
Reactor volume
Feed flow rate

(a) Experiment no. 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Time (hrs)

Biomass concentration
Substrate concentration
Reactor volume
Feed flow rate

(b) Experiment no. 2.

Figure 8.6. Fed-batch data from two identification experiments.

92 PARFIT (II) : Efficiency, Robustness and Flexibility

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Time (hrs)

Biomass concentration
Substrate concentration
Reactor volume

(a) Experiment no. 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Time (hrs)

Biomass concentration
Substrate concentration
Reactor volume

(b) Experiment no. 2.

Figure 8.7. Experimental measurements and optimal solution trajectories for the
fed-batch problem.

to increase, which inhibits the growth of biomass. The unknown parameters in the
parameter estimation problem are:

θ =
[
X0,1 S0,1 V0,1 X0,2 S0,2 V0,2 µmax K1

]T (8.14)

in which X0,i, S0,i and V0,i refer to the initial values of experiment no. i. Using an
optimization tolerance of 10−6 the parameter estimates listed in Table 8.5 are obtained.
All estimates, except from X0,1, are within a 95% confidence interval. The optimal
solution trajectories are plotted in Figure 8.7. The estimated correlation matrix is
given in Table 8.6. The highest correlation is observed between µmax and K1.

This example illustrates the importance of handling time-varying inputs. A disconti-
nuous input profile, as in Figure 8.6, puts certain demands on the differential equation
solver. Many solvers (e.g. DASPK) have an option for providing continuous output,
which does not interfere with the overall integration and time step selection. However,
if discontinuities are present, the integration must be restarted at each discontinuity.

Parameter True value Final estimate Marginal confidence interval

X0,1 1.000 0.972 ±0.023
S0,1 0.245 0.229 ±0.034
V0,1 1.000 0.987 ±0.013
X0,2 0.500 0.495 ±0.009
S0,2 0.245 0.237 ±0.027
V0,2 1.500 1.494 ±0.013
µmax 1.000 0.997 ±0.005
K1 0.030 0.025 ±0.012

Table 8.5. Estimation results for the fed-batch fermentation problem using two data
sets. A 95% marginal confidence interval is listed for each parameter. All estimates,
except from X0,1, are within the confidence interval.

8.2. Regularization 93

X0,1 S0,1 V0,1 X0,2 S0,2 V0,2 µmax K1

X0,1 1.000
S0,1 0.818 1.000
V0,1 0.503 0.141 1.000
X0,2 0.267 0.002 -0.178 1.000
S0,2 0.304 -0.137 0.257 0.240 1.000
V0,2 -0.175 -0.528 0.227 0.206 0.396 1.000
µmax -0.223 -0.222 -0.080 -0.033 -0.021 0.561 1.000
K1 -0.177 -0.276 0.019 0.039 0.100 -0.156 0.330 1.000

Table 8.6. Estimated correlation matrix for the parameters in the fed-batch fer-
mentation problem. The numerically largest elements of the correlation matrix are
marked in grey (threshold value = 0.8).

Being a one-step method ESDIRK34 does not suffer particularly from these restarts. A
variable order multi-step method, on the other hand, would need to revert to low order
at each restart making the integration inefficient. Thus, by using a one-step method,
discontinuous input profiles are handled with only small additional costs. ¥

The above example touches on the experimental design aspect. By manipula-
ting the inputs in order to excite the dynamics of the system, the information
content in the data obtained is increased, thereby increasing the quality of the
resulting parameter estimates. However, the questions remain how to choose
the input profiles and possibly also when to place the samples, provided that
only a limited number of samples can be made. Consider, for example, a batch
experiment, in which the concentration of a chemical species is measured at 10
discrete time points. Should the samples be placed equidistantly, concentrated
near the starting point, or concentrated near the end in order to gain as much
information as possible? Also, if the experiment can be manipulated (e.g. by
varying the temperature), how should the input profile be chosen? Bauer et al.
(2000) have shown that these questions can be answered by solving a dynamic
optimization problem, in which a performance criterion related to the size or
shape of the ellipsoidal confidence region for the parameters is minimized. Thus,
by perturbing the system and placing the samples “in the right way” the sta-
tistical quality of the estimates is maximized. Although a very important and
interesting issue, it is beyond the scope of this thesis to address experimental
design in more detail.

8.2 Regularization

One of the difficulties often encountered in parameter estimation problems is ill-
conditioning, which arises due to e.g. high correlation between the parameters.
If no measures are taken to reduce the ill-conditioning, the optimization will
often terminate unsuccessfully. The solution of the linear subproblems arising
during optimization will be sensitive towards perturbations in the data, and
the search directions computed will often be seriously in error. One possible
remedy for this problem is to introduce regularization into the parameter es-

94 PARFIT (II) : Efficiency, Robustness and Flexibility

timation problem to stabilize the solution. Computing regularized solutions
to least squares type problems is a huge area of research in itself. The type
of regularization considered here is known as Tikhonov regularization (Hansen,
1998). The basic idea is to define the regularized solution as the minimizer of
the following problem:

min
θ

f(θ) =
1
2

m∑

i=1

w2
i ri(θ)2

︸ ︷︷ ︸
residual term

+
1
2

np∑

i=1

w2
reg

(
θi − θi,0

θi,ref

)2

︸ ︷︷ ︸
regularization term

(8.15)

in which θi,0 denotes the initial guess for parameter θi and θi,ref denotes a
reference value for θi, which should be chosen to the expected order of mag-
nitude2. wreg denotes the regularization weight. Thus, the objective function
is composed of a residual term and a regularization term. Differentiating the
regularization term twice with respect to the parameters gives a diagonal con-
tribution to the Hessian matrix, thus improving the conditioning of the matrix.
Specifying wreg = 0 reduces the problem to the standard least squares problem.
By changing wreg the amount of regularization can be adjusted. The regula-
rization term acts as a penalty to the objective function for any movement of
the parameters away from the initial guesses. This action causes bias in the
resulting parameter estimates, and the key issue when using regularization is
to balance the trade-off between improved conditioning of the system and bias
in the estimates.

A useful tool when analyzing ill-conditioned problems is the singular value
decomposition (SVD). The SVD extracts information from a matrix by decom-
posing it into left singular vectors, singular values and right singular vectors.
Let A ∈ Rm×np be a rectangular matrix with m ≥ np, then:

A = UΣV T =
np∑

i=1

uiσiv
T
i (8.16)

in which U =
[
u1, . . . ,unp

]
and V =

[
v1, . . . ,vnp

]
are matrices with orthonor-

mal columns, and Σ = diag(σ1, . . . , σnp) has non-negative diagonal elements
appearing in non-increasing order:

σ1 ≥ σ2 ≥ . . . ≥ σnp ≥ 0 (8.17)

The condition number of A is defined as the ratio between the largest and small-
est singular values, σ1/σnp . Furthermore, from (8.16) the following relations are
obtained:

‖Avi‖2 = σi, i = 1, . . . , np (8.18)

If a small singular value exists compared to σ1, then (8.18) shows that the
columns of A are nearly linearly dependent meaning that A is nearly rank
deficient. Thus, by performing an SVD, information about the conditioning of
the system can be extracted. More specifically, by inspecting the right singular
vectors, the linearly dependent parameters in the parameter estimation problem
can be identified. This is illustrated in the next example.

2The implementation in PARFIT uses θi,ref = θi,0 as default. Thus, the reference values
need not be specified unless values different from θi,0 are desired.

8.2. Regularization 95

Example 8.3 (Using Regularization in the Dow Chemicals Problem (I))
Consider the Dow Chemicals problem with 3 data sets and 8 parameters as treated in
Example 8.1. Using the initial parameter guesses as provided in Biegler et al. (1986),
the initial Hessian approximation is computed. Figure 8.8 shows the singular values of
the Hessian approximation using (i) no regularization and (ii) using regularization with
wreg = 1. By introducing regularization the condition number of the initial Hessian
matrix is reduced by a factor of 104.

1 2 3 4 5 6 7 8
10

−8

10
−6

10
−4

10
−2

10
0

10
2

S
in

gu
la

r
va

lu
es

No regularization
Regularization: w

reg
=1

Figure 8.8. Plot of singular values for the initial Hessian approximation in the Dow
Chemicals problem.

Inspection of the last right singular vector in the SVD of the Hessian matrix in the
unregularized case shows that the smallest singular value can be identified with a linear
combination consisting mainly of columns 3 and 8 of the Hessian. These columns
correspond to the parameters k0,−1 and K2, which is in good agreement with the
observations made regarding correlation in Example 8.1. ¥

The above example illustrates the effect of introducing regularization. The
strong correlation between some of the parameters is reduced at the expense
of bias in the resulting parameter estimates. The important question remains
how to choose an “adequate” level of regularization. This question is studied
in the next example.

Example 8.4 (Using Regularization in the Dow Chemicals Problem (II))
Consider again the Dow Chemicals problem. In Example 8.1 it was found that 8
parameters could be optimized, only if the initial guess for K1 was changed from 10−17

to 10−15. In this example the influence of the regularization weight on the objective
function value, and hence on the optimal solution, is studied, and it is shown that
the optimal solution to the Dow Chemicals problem can be traced from the unaltered
starting guess by successively lowering the regularization weight.

Using the same starting guess as in Example 8.1 the parameter estimation problem
with 3 data sets and 8 parameters is solved for varying values of the regularization
weight. The results are illustrated in Figure 8.9. Figure 8.9a–b show the value of
the residual term and the regularization term in the objective function, respectively,
whereas Figure 8.9c shows the fraction of the objective function value corresponding to
each of these two terms. Finally, the condition number of the Hessian approximation
evaluated at the optimal solution is shown in Figure 8.9d. Figure 8.10 shows the values
of the transformed parameters as a function of the regularization weight.

96 PARFIT (II) : Efficiency, Robustness and Flexibility

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

Regularization weight

R
es

id
ua

l t
er

m
0.21

(a) Residual term in objective function.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

10
2

Regularization weight

R
eg

ul
ar

iz
at

io
n

te
rm

(b) Regularization term in objective function.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Regularization weight

F
ra

ct
io

n
of

 o
bj

. f
un

. v
al

ue

Regularization term
Residual term

(c) Fraction of objective function corresponding to the
residual and regularization terms, respectively.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
2

10
4

10
6

10
8

Regularization weight

C
on

di
tio

n
nu

m
be

r

(d) Condition number for the Hessian matrix evaluated at
optimum.

Figure 8.9. Influence of regularization on the objective function in the Dow Chemicals
problem. The values of the residual and regularization terms in (8.15) are plotted
as a function of the regularization weight along with the condition number for the
Hessian approximation.

8.2. Regularization 97

10
−4

10
−2

10
0

10
2

10
4

0.9

1

1.1
ln

 k
0,

1

10
−4

10
−2

10
0

10
2

10
4

1

1.1

1.2

ln
 k

0,
2

10
−4

10
−2

10
0

10
2

10
4

8

10

12

14

16

ln
 k

0,
−

1

10
−4

10
−2

10
0

10
2

10
4

1.9

1.95

2

E
1 /

10
4

10
−4

10
−2

10
0

10
2

10
4

1.85

1.9

1.95

2

E
2 /

10
4

10
−4

10
−2

10
0

10
2

10
4

2

2.2

2.4

2.6

E
−

1 /
10

4

10
−4

10
−2

10
0

10
2

10
4

−38

−37

−36

−35

ln
 K

1

Regularization weight
10

−4
10

−2
10

0
10

2
10

4

−32

−30

−28

−26

ln
 K

2

Regularization weight

Figure 8.10. Optimal parameter values in the Dow Chemicals problem plotted as a
function of the regularization weight. The interval for the regularization weight is
expanded compared to the plots in Figure 8.9 in order to show the behaviour with
only a small amount of regularization. (¤ : starting guess for the parameters).

Looking at the plots, several interesting observations are made. The plots are generated
by successively lowering the regularization weight. For wreg > 100 the optimization
problem is dominated by the regularization part. The information in the actual problem
is lost leaving a large residual part and only the regularization part is minimized. For
wreg ' 100 the regularization part has a maximum, whereas a rapid decrease occurs
in the residual part. This rapid decrease coincides with a decrease in K1 (c.f. Figure
8.10), whereas the major changes in the remaining parameters occur around wreg = 1.
For wreg approximately between 10 and 100 the objective function value is dominated
by the regularization part. In this interval the optimization problem gradually changes
from being dominated by regularization to being dominated by residuals. For wreg < 10
the residual part levels off at a value around 0.21, whereas the regularization part
decreases, as expected, with decreasing regularization weight.

The key question is which regularization weight to choose. The goal is to balance the
trade-off between improved conditioning and too much regularization giving bias in the
estimates. The regularization problem may be regarded as a filtering problem. Enough
filtering should be applied to stabilize the solution without loosing information in the
actual problem. Comparing Figure 8.9c and d indicates that wreg ' 0.2 is a reasonable
choice for this specific problem. The conditioning is improved substantially (almost)

98 PARFIT (II) : Efficiency, Robustness and Flexibility

without affecting the objective function value. The jump in the condition number at
wreg ' 0.5 is caused by the jumps in the parameters.

Inspection of the parameter plots shows that all parameters reach a “steady state” for
wreg < 0.2 except from k0,−1 and K2, which are drifting due to their high correlation
(c.f. Example 6.3).

To conclude this example an experiment is performed, in which the unaltered initial
parameter guesses, as provided in Biegler et al. (1986), are used. Earlier attempts
without regularization showed that the optimization algorithm terminated unsuccess-
fully after a few iterations unable to compute a step giving a sufficient decrease in the
objective function. By experimenting it is found that performing three consecutive op-
timizations with wreg = 1.00, 0.20, 0.05 the optimal solution obtained in Example 6.3 is
reproduced (final objective function value = 0.21). Hence, using regularization can be
a strong tool for tracing the optimal solution from poor initial parameter guesses. Fur-
ther experiments show that the optimal solution can be traced, even when the initial
parameter guesses are perturbed “in the wrong direction”. ¥

To summarize, two important observations are made in the Dow Chemicals
problem regarding the use of regularization:

• It is possible to choose the regularization weight such that the conditioning
is improved substantially without affecting the objective function value.
That is, there seems to be a level for the amount of regularization that
allows the benefits without “suffering” (too much) bias in the estimates.

• The optimal solution can be traced by performing a sequence of optimiza-
tions, in which the amount of regularization is reduced. This technique
has great potential in terms of improving the global properties of the algo-
rithm, thereby improving the robustness towards poor initial parameter
guesses.

8.3 Numerical Difference Approximations

The use of PARFIT requires, besides specification of the model equations, a user
provided subroutine for computation of the Jacobian of the DAE system along
with the partial derivatives with respect to the parameters being estimated:

∂f

∂y
=

∂f1

∂y1
· · · ∂f1

∂yn

...
...

∂fn

∂y1
· · · ∂fn

∂yn

 ,

∂f

∂θ
=

∂f1

∂θ1
· · · ∂f1

∂θnp

...
...

∂fn

∂θ1
· · · ∂fn

∂θnp

 (8.19)

Experience tells that users tend to make erroneous implementations of the Ja-
cobian, so in order to provide more user friendliness an option is included for
approximating the derivatives by finite difference quotients. A simple forward
difference approximation is used. The jth column of the Jacobian is approxi-
mated as:

∂f

∂yj
≈ f (t, (y1, . . . , yj + ∆yj , . . . , yn), θ)− f (t, (y1, . . . , yj , . . . , yn),θ)

∆yj
(8.20)

in which ∆yj is a suitably chosen small perturbation. A similar approximation
is used for the matrix of partial derivatives with respect to the parameters.

8.4. Consistent Initialization of DAEs 99

Some care has to be exercised in choosing the small perturbations ∆yj . If they
are chosen too large, the truncated higher order terms in the Taylor expan-
sion become significant rendering the approximations inaccurate. On the other
hand, if they are chosen too small, the subtraction in the numerator of (8.20)
is subject to loss of significance. As a rule of thumb, to balance these two
phenomena, the perturbations should be chosen as (Nielsen, 2000):

∆yj =
√

εm|yj | (8.21)

in which εm denotes the machine precision3. The option for numerical diffe-
rence derivatives has been tested in the gas-oil cracking problem and the Dow
Chemicals problem. All results were reproducible with only minor differences
in the computational statistics, such as total number of integration steps, etc.

8.4 Consistent Initialization of DAEs

An important issue, which so far has been silently passed over, is the consistent
initialization of DAEs. In case of algebraic equations, the initial conditions for
a subset of the dependent variables cannot be specified arbitrarily. In earlier
chapters a compact notation for the DAE system was used for convenience (c.f.
(1.2) in Chapter 1). The class of problems actually treated by PARFIT is index
one DAEs in semi-explicit from:

dy

dt
= f(t,y, z, θ), y(t0) = y0 (8.22a)

0 = g(t, y, z, θ), z(t0) = z0 (8.22b)

in which the state vector has been separated into differential variables, y ∈ Rnd ,
and algebraic variables, z ∈ Rna . θ ∈ Rnp denotes the vector of parameters to
be estimated. f(·) and g(·) are functions mapping R× Rnd × Rna × Rnp into
Rnd and Rna , respectively. Given y0, the problem of computing consistent ini-
tial values consists of determining z0 such that (8.22b) is satisfied. If started
from arbitrary initial values the DAE integrator is likely to terminate unsuc-
cessfully due to repeated error test failures in the first step.

Inconsistencies in the algebraic equations arise in chemical process models for
many reasons. For example, a discontinuous input profile causes an inconsis-
tency at each discontinuity. Other examples include process inherent disconti-
nuities such as phase changes. For the class of parameter estimation problems
treated by PARFIT inconsistencies arise in three different places:

1. The first call made to the integrator in the first objective function eval-
uation requires a consistent initialization of the algebraic variables. The
user must provide an initial guess for z0.

2. Each correction to the parameter vector computed by the optimizer calls
for a reinitialization of the algebraic variables. The consistent values
computed during the previous objective function evaluation are used as
starting guesses.

3PARFIT is a double precision Fortran implementation, for which εm = 2−53 ' 10−16 on
most computers.

100 PARFIT (II) : Efficiency, Robustness and Flexibility

3. Discontinuities in the inputs require reinitializations. PARFIT supports
piecewise constant inputs. Thus, whenever a change occurs in one of the
inputs, a reinitialization is performed.

Process inherent discontinuities or events are not supported in PARFIT.

Several researchers have studied the problem of computing consistent initial
values (Brown et al., 1998; Kröner et al., 1992; Majer et al., 1995; Najafi et al.,
2004). The nonlinear equations (8.22b) are often solved with a Newton type
method, but much of the work presented concerns DAE problems of a more
general class than (8.22) such as fully implicit DAEs or DAEs of index greater
than one. Majer et al. (1995) and Najafi et al. (2004) suggest using a con-
tinuation method instead of a Newton type method to overcome the problems
arising from the limited region of convergence for Newton’s method. Continua-
tion methods are not considered here, but the basic idea for solving g(z) = 0 is
to introduce a continuation parameter, λ. Instead of solving g(z) = 0 directly,
an augmented system defined by:

h(z, λ) = (1− λ)g0(z) + λg(z), λ ∈ [0, 1] (8.23)

is solved, in which g0(z) is chosen to be a simple function such that h(z, 0) = 0
has a known solution. At λ = 1 the original problem is recovered. Continuation
methods trace the solution from λ = 0 to λ = 1.

The initializations and reinitializations are handled in PARFIT by using the
LMDER optimization algorithm which is already used for parameter optimiza-
tion. When applied to a set of nonlinear equations, the Levenberg-Marquardt
method reduces to Newton’s method, if the Levenberg-Marquardt parameter is
chosen to 0. One step in the solution of g(z) = 0 consists of solving the linear
system: (

∂g

∂z

∂g

∂z

T

+ µI

)
·∆z = −∂g

∂z
g(z) (8.24a)

and updating the solution vector:

z(k+1) = z(k) + ∆z (8.24b)

A conservative initial value is used for the trust region parameter, µ. Since the
DAE system is assumed to be in semi-explicit form, in which the differential
equations precede the algebraic equations, the values of g(z) and ∂g/∂z are
readily obtained form the user provided subroutines. Hence, no additional
information is required from the user for the initialization calculation. An
option is included for approximating ∂g/∂z numerically.

Example 8.5 (Consistent Initialization in the Dow Chemicals Problem)
In earlier examples dealing with the Dow Chemicals problem consistent initial values
were supplied and analytic expressions were used for the reinitializations due to the
simple structure of the algebraic equations. This example illustrates the use of LMDER
for the consistency calculations.

The parameter estimation problem with 8 unknown parameters and 3 data sets, as in
Example 8.1, is considered. The following inconsistent initial values are used for each

8.5. Noise Corrupted Data 101

data set:

y7(0) = 1.0
y8(0) = 1.0
y9(0) = 1.0

y10(0) = 1.0

Each objective function evaluation requires three (re)initializations, one for each data
set. The average number of iterations required for the initializations during one objec-
tive function evaluation is plotted as a function of the overall iteration number in Figure
8.11 along with the corresponding value of the objective function. The observed perfor-

0 5 10 15

5

10

15

20

25

N
o.

 o
f c

on
si

st
en

cy
 it

er
at

io
ns

0 5 10 15
0

20

40

60

80

Overall iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Figure 8.11. Performance statistics for the consistency calculations in the Dow
Chemicals parameter estimation problem. The average number of iterations re-
quired for the (re)initializations are plotted as a function of the overall iteration
number along with the corresponding value of the objective function. (∗ : left axis,
5 : right axis).

mance seems reasonable. The initialization requires 24 iterations, which is much higher
than the number required for the subsequent reinitializations. The corrections com-
puted to the parameter vector are small in the beginning due to a conservative value of
the trust region parameter which allows for easy reinitializations. The major “jumps”
in the parameters occur near the end of the optimization requiring more iterations in
the consistency calculations. Further experiments indicate that the initializations are
insensitive towards the starting guesses for the algebraic variables. ¥

8.5 Noise Corrupted Data

As shown in Section 8.2, using regularization improves the robustness of the
parameter estimation algorithm towards poor initial parameter guesses. The
effect of measurement noise on the robustness, and especially on the quality of
the estimates, is investigated in this section.

Example 8.6 (Influence of Measurement Noise on Parameter Estimates)
The gas-oil cracking model is used as test problem. For completeness, it is restated
here: [

ẏ1

ẏ2

]
=

[−(k1 + k3)y2
1

k1y
2
1 − k2y2

]
,

[
y1(0)
y2(0)

]
=

[
1
0

]
(8.25)

A number of simulated experiments are performed, in which measurements are obtained
at 10 equidistant points in time and perturbed with random noise according to the

102 PARFIT (II) : Efficiency, Robustness and Flexibility

following measurement equation:
[
ỹ1

ỹ2

]

j

=
[
y1

y2

]

j

+ εj , εj ∈ N (0, V), V =
[
σ11 0
0 σ22

]
(8.26)

The following parameter values are used when generating data:

k1 = 12, k2 = 8, k3 = 8 (8.27)

Ideally, when reestimating k1, k2 and k3 from noise corrupted data, the true values
would be recovered on average. To investigate this4, 1000 data sets are generated with
σ11 = σ22 = 10−4 and another 1000 data sets with σ11 = σ22 = 10−3. One optimization
is performed for each data set using default settings in PARFIT (no regularization).
Initial conditions are not estimated. The variations in the resulting parameter estimates
are illustrated in Figure 8.12 in terms of boxplots. To obtain comparable plots, the
true parameter values, kj,true, were subtracted from the estimates and the results were
then scaled by kj,true. The red line in the boxplots indicate the median, whereas the
upper and lower bounds of the boxes define the upper and lower quartiles. The height
of the box is referred to as the interquartile range (IQR). The length of the whiskers
extending from each end of the box define the values within 1.5 · IQR of the box. The
values beyond the end of the whiskers are regarded as outliers.

1 2 3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

V
al

ue
s

Parameter (k
j
 − k

j,true
) / k

j,true

(a) Variance of measurement noise :
σ11 = σ22 = 10−4.

1 2 3

−3

−2

−1

0

1

2

V
al

ue
s

Parameter (k
j
 − k

j,true
) / k

j,true

(b) Variance of measurement noise :
σ11 = σ22 = 10−3.

Figure 8.12. Boxplots illustrating the variation in the parameter estimates obtained
from 1000 optimizations. Results are shown for two different noise levels in the
measurements used for estimation. (Notice the different scaling of the y-axis in the
two plots).

The estimates obtained from the low noise level data are centered around the true values
with a few outliers on each side. However, as the noise level is increased, the variation in
the estimates increases dramatically, and the outliers are distributed unevenly around
the true values. Thus, the plots indicate that the estimates are increasingly biased
when the measurement noise increases. The medians are still close to the true values,
but the mean values differ. This apparent drifting of the mean values of the parameter
estimates is investigated in Figure 8.13, which shows mean values as a function of the
measurement noise level. For each noise level 100 optimizations are performed. The

4Inspection of a few plots of data points indicated that 10−4 − 10−3 is a reasonable interval
for the variance.

8.5. Noise Corrupted Data 103

mean parameter estimates are plotted along with error bars indicating a 95% confi-
dence interval. The implicit assumption here, which has also been used in previous
examples when constructing confidence intervals, is that the parameter estimates are
normally distributed. Due to the variation in the estimates the condidence intervals
are wide and the mean parameter estimates are not significantly different from the
true values in a statistical sense. Close inspection of the plots in Figure 8.13 shows a
slight indication of the drifting phenomenon, but all mean values are clearly within the
confidence intervals.

1 2 3 4 5 6 7 8 9 10

x 10
−4

5

10

15

20

k 1

1 2 3 4 5 6 7 8 9 10

x 10
−4

0

5

10

15

k 2

1 2 3 4 5 6 7 8 9 10

x 10
−4

−5

0

5

10

15

Variance of measurement noise

k 3

Figure 8.13. Mean value of parameter estimates plotted as a function of the mea-
surement noise level. Each mean value is based on 100 estimations. The errorbars
indicate a 95% confidence interval. (Dashed line : true parameter value).

Regarding robustness in the above estimations, all optimizations terminate success-
fully. Estimation using the high noise level data requires, on average, more iterations
compared to using the low noise level data. Moreover, greater variation is observed in
the number of iterations required for convergence when using the high noise level data.

¥

The validity of the above assumption about normally distributed measurement
noise may be questionable in many realistic applications, but the example still
illustrates possible effects of measurement noise. The numerical algorithms
seem robust towards noise corrupted data, keeping in mind the assumption
about normally distributed noise. A different noise structure may lead to a
different result.

104 PARFIT (II) : Efficiency, Robustness and Flexibility

9

Conclusion

The primary focus of the work presented in this thesis has been on the prac-
tical solution of parameter estimation problems in nonlinear dynamical sys-
tems. More specifically, parameter estimation problems in systems described
by ordinary differential equations or differential-algebraic equations have been
considered.

Essentially two numerical algorithms are needed when solving parameter esti-
mation problems in dynamical systems: A differential equation solver for sol-
ving the underlying model equations along with the corresponding sensitivity
equations and an optimizer for optimizing the parameters. Separately, these
two areas of numerical analysis are well understood, but possible improvements
remain regarding the particular interaction of differential equation solution and
optimization encountered in dynamical parameter estimation, which has moti-
vated the work presented in this thesis. The literature abounds with parameter
estimation case studies severely lacking a qualified motivation for the numeri-
cal algorithms employed. In particular, the generation of gradient information
for the optimizer often seems to suffer from naive approaches, in which the
gradients are either approximated by finite difference schemes or calculated
by solving the sensitivity equations with an off-the-shelf ODE solver, causing
unnecessary inefficiency of the overall algorithm.

By understanding the advantages and disadvantages of the numerical algo-
rithms involved, and by gaining experience through numerous numerical ex-
periments with varying choices of differential equation solvers and optimization
algorithms, the goal of this thesis has been to provide a systematic framework,
consisting of tools and guidelines, for the practical solution of parameter esti-
mation problems in dynamical systems.

The first part of the thesis was devoted to a review of the relevant literature
emphasizing numerical methods for optimization and differential equation solu-
tion. The second part of the thesis covered a series of benchmark tests, in which
the efficiency of different numerical algorithms were compared. A significant
part of the work presented in this thesis has been put into developing a flexible
tool for parameter estimation (PARFIT) based on the knowledge gained from
the benchmark tests. This work was initiated in the second part and continued
throughout the final part.

The different issues of dynamical parameter estimation investigated in this the-
sis fall into three groups: Efficiency issues, robustness issues and flexibility is-
sues. Regarding efficiency, a specifically tailored equation solver of the Runge-
Kutta family was used for the state and sensitivity integration. The solver

106 Conclusion

exploits the special structure of the sensitivity equations and reuses informa-
tion computed for the state integration to speed up the sensitivity integration.
It was shown that this method was comparable in performance to the much
larger package DASPK, which is based on a BDF method. Furthermore, it
was shown that the efficiency could be improved by modifying the Levenberg-
Marquardt method used for optimization to make it more suitable to dynamical
systems, and by using a simple tolerance selection mechanism, which adjusts
the optimization and equation solver tolerances depending on the distance from
the optimal solution. In one example, however, it was observed that using the
tolerance selection mechanism could prevent a successful optimization.

The robustness of parameter estimation software is a key issue. Regularization
was introduced to stabilize the solution process for ill-conditioned problems. A
simple technique, in which a sequence of optimizations are performed with a
successively lowered value of the regularization weight, was proposed for tracing
the optimal solution from a poor initial parameter guess. The technique proved
useful when applied to a notoriously difficult problem from reaction engineering.
Moreover, an automatic consistency calculation was implemented for systems
with algebraic equations to ensure robustness towards inconsistencies arising
due to inconsistent initial values provided by the user or discontinuities in some
of the inputs.

The PARFIT program was developed to provide a flexible environment facili-
tating the setup of parameter estimation problems. The choices and decisions
made at the various stages of the design were motivated throughout the thesis.
The class of problems treated is limited to systems modelled by differential-
algebraic equations, but flexibility is provided in terms of allowing multiple
data sets in the estimation and time varying inputs. In general, much attention
was paid to building an easy-to-use program. Default settings have been sup-
plied, which limits the amount of expertise required from the user. The current
features in PARFIT are summarized below:

• PARFIT estimates unknown problem parameters from experimental data
using a weighted least squares fitting criterion. Systems described by
index one differential-algebraic equations (DAEs) in semi-explicit form
are handled.

• Multiple data sets are allowed in the estimation. Each data set consists
of experimental time values, measurements, weight factors and inputs.
Piecewise constant inputs are supported.

• For pure ODE systems an option exists for estimating initial conditions
corresponding to each data set.

• Tikhonov regularization can be used for suspected ill-conditioned prob-
lems.

• An adaptive tolerance selection mechanism is used to improve efficiency.

• Numerical difference approximations can be used for the DAE system
Jacobian and the partial derivatives of the right-hand-side functions of
the DAE with respect to the parameters being estimated.

• Inconsistent algebraic equations are automatically initialized. A reinitial-
ization is performed after each discontinuity, which arises due to either a

Conclusion 107

correction computed to the parameter vector or a discontinuity in one of
the inputs.

• Parameters are scaled internally. An option exists for user provided scale
factors.

• The data must be scaled using the individual weight factors in the data
sets. Different scaling strategies were suggested in Section 6.1.

• Approximate covariance and correlation matrices for the parameters are
computed.

Current limitations of PARFIT are discussed in the next section. Assuming that
PARFIT, or a similar program, is available, the following systematic approach
to parameter estimation can be applied:

1. Obtain initial parameter values using prior physical knowledge.

2. Study the problem by simulation using initial parameter values. Ensure
physically meaningful results.

3. Scale all parameters to be within approximately the same order of mag-
nitude. Apply logarithmic transformations to parameters that are known
to be positive.

4. Scale the data if some of the components are measured on different scales
or if information is available about the error structure in the data.

5. Compute sensitivities. Diagnose possible linear relations among the pa-
rameters from sensitivity plots or by performing an SVD analysis of the
initial Hessian approximation.

6. If the problem is ill-conditioned:

either eliminate dependencies by fixing one or several parameters in
the optimization or reformulate the model.

or apply regularization.

7. Perform an optimization using default settings.

8. If the optimization is unsuccessful, possible actions are:

use more conservative settings by tightening the optimization toleran-
ces and the initial trust region parameter.

perform multiple optimizations, in which the regularization weight is
reduced successively, thereby trying to trace the optimal solution.

inspect the correlation matrix at the point of termination. Identify
linear dependencies.

In conclusion, the main result of the work presented in this thesis is the frame-
work, consisting of the PARFIT tool along with guidelines for a systematic ap-
proach to the many difficulties often encountered, which facilitates parameter
estimation in dynamical systems. The suggested framework does not guaran-
tee success, but it certainly increases the chance of success. Due to the close
link to model building and experimental design, estimating parameters is in-
herently an iterative and interactive process, in which models are reformulated,
experiments redesigned and parameters reestimated.

108 Conclusion

9.1 Suggestions for Future Work

During the course of the work presented in this thesis a number of related
problems were encountered, the treatment of which was beyond the scope of
the work. Some of these problems are presented in this section as suggestions
for future work.

The most obvious suggestion for future work is to address some of the current
limitations of PARFIT. In the current version of PARFIT it is assumed that the
states of the model are measured directly. A more general formulation would
include a measurement equation relating the measured quantities to the states
of the model. The extension in PARFIT is straightforward requiring an ex-
tra user supplied subroutine, in which the functions mapping the states to the
outputs are provided. Given the parametric sensitivities of the model states,
the same subroutine should return the overall derivatives of the measurement
functions for use when building the gradient of the objective function. Another
possible extension is to implement a functionality for continuous output in the
integrator. Currently the integrator is stopped at each sample to provide the
model output which interrupts the stepsize controller. Instead an interpolation
formula having the same order of accuracy as the integration scheme (Enright
et al., 1986) can be used to provide output at the desired points in time. The
ESDIRK34 integrator is already prepared for this extension, the necessary co-
efficients for the interpolant being provided in Kristensen et al. (2004a). Along
these same lines, PARFIT could be extended to handle systems with discrete
events. In this case the continuous extension is required to accurately detect
when an event occurs. A complete extension to discrete event systems is, how-
ever, not as straightforward as the continuous output functionality.

With respect to robustness a possible topic for future work is to implement a
mechanism for rejection of a step computed by the optimizer before the objec-
tive function is fully evaluated. In some circumstances the optimizer computes
a correction to the parameter vector that is far off causing severe stiffness of the
model equations or introducing positive eigenvalues. To improve both efficiency
and robustness in these situations it would be desirable to be able to reject the
correction before the entire objective function is evaluated. One possibility
is to stop the objective function evaluation once the value from the previous
evaluation is exceeded. Another issue concerning robustness is the use of regu-
larization. Currently it is left for the user to diagnose linear dependencies and
take the necessary actions. A topic for future work is to build automatic tools
for detection and proper treatment of linear dependencies by clever manipula-
tion of the regularization weights. In general, much can be done in designing
intelligent parameter estimation software that alerts the user of possible pitfalls
and advises possible solutions.

Among the more comprehensive extensions to PARFIT it may be worthwhile
to consider extending the class of problems treated to fully implicit DAEs or
systems described by PDEs. Moreover, other methods of estimation such as
maximum likelihood could be considered. Finally, the experimental design is-
sue could be addressed, the motivation being the dependence of parameter
estimation on sufficiently informative experimental data.

Appendices

A

Description of PARFIT

A significant part of the work presented in this thesis has been put into de-
veloping the PARFIT program for easy estimation of parameters in systems
described by differential-algebraic equations. In this appendix a description of
PARFIT is given. A few details are explained regarding the solution of the
DAEs and computation of sensitivities. Special attention is given to the sensi-
tivity algorithm implemented in ESDIRK34 to supplement the introduction of
ESDIRK34 in Section 3.1.1.1.

PARFIT estimates parameters using a weighted least squares criterion. The
minimization problem is:

min
θ

f(θ) =
1
2

ld∑

k=1

lc∑

j=1

lkt∑

i=1

wk
ij

2
(
yj(ti, θ, uik)− ỹk

ij

)2
(A.1)

in which lc and ld denote the number of measured components and the num-
ber of data sets, respectively. The kth data set contains measurements of lc
components at lkt experimental time instants. yj(ti, θ, uik) denotes the model
prediction of component yj at time ti with the combination of inputs given by
uik, whereas ỹk

ij denotes the corresponding measurement. The model predic-
tions are obtained by solving the DAEs, which are assumed to be in semi-explicit
form:

dy

dt
= f(t,y, z, θ), y(t0) = y0

0 = g(t, y, z, θ), z(t0) = z0

(A.2)

in which y ∈ Rnd denotes the vector of differential variables, z ∈ Rna denotes
the vector of algebraic variables, and θ ∈ Rnp denotes the vector of parameters
to be estimated. f(·) and g(·) are functions mapping R× Rnd × Rna × Rnp into
Rnd and Rna , respectively. PARFIT handles DAEs of index up to one.

A.1 DAE Solution and Sensitivity Computation

PARFIT uses the optimization algorithm LMDER (Moré, 1977) described in
Section 5.1 and the DAE solver ESDIRK34 (Kristensen et al., 2004a) described
in Section 3.1.1.1. ESDIRK34 implements the staggered direct method for
sensitivity computation. Below, an outline is given of the sensitivity implemen-
tation.

For simplicity, only differential equations are assumed to be present. In case
of algebraic equations, an extra set of algebraic sensitivity equations need to

112 Description of PARFIT

be solved1 (the sensitivity extension of ESDIRK34 to DAEs is described in
Kristensen et al. (2004b)). The ESDIRK34 discretization scheme is given by:

Y i = yn + h
i∑

j=1

aijf(tn + cjh, Y j , θ) (A.3a)

yn+1 = yn + h
4∑

i=1

bif(tn + cih,Y i, θ) (A.3b)

en+1 = h
4∑

i=1

dif(tn + cih,Y i, θ) (A.3c)

in which Y i designates the solution at the ith (i = 1, . . . , 4) internal stage of
integration step n. The coefficients are defined by the Butcher tableau:

0 0
c2 a21 γ
c3 a31 a32 γ
1 b1 b2 b3 γ

yn+1 b1 b2 b3 γ

en+1 d1 d2 d3 d4

(A.4)

The following notation is established:

Ti = tn + cih

Y i = Y i(yn, θ), i = 2, 3, 4

F i(yn, θ) = f(Ti, Y i(yn, θ),θ)

(A.5)

The computation of sensitivities in ESDIRK34 is separated into a state sensitiv-
ity computation and a parameter sensitivity computation. The state sensitivi-
ties represent the sensitivities with respect to initial conditions. The equations
describing these sensitivities are simpler compared to the sensitivity equations
for parameters in that the initial conditions do not enter explicitly into the
right-hand-side functions of the DAE system. When deriving the sensitivity
algorithm, the basic idea is to differentiate the discrete equations (A.3) with
respect to both the initial conditions and the parameters. First, a single inte-
gration step is considered, i.e. the sensitivities are derived at tn+1 with respect
to the states and parameters at tn. A simple recursion is then used to update
the sensitivities between successive integration steps.

The sensitivities with respect to the initial conditions are derived as:

∇yn
yn+1 = I + h

4∑

i=1

bi∇yn
F i(yn, θ)

= I + hb1∇yf(tn,yn, θ) + h

3∑

i=2

bi∇yn
Y i∇yf(Ti, Y i, θ)

+ hγ∇yn
Y 4∇yf(T4, Y 4, θ)

1ESDIRK34 handles index one DAEs and the corresponding sensitivity equations.

A.1. DAE Solution and Sensitivity Computation 113

The ith stage gradient (for i = 2, 3, 4) ∇yn
Y i is calculated as:

∇yn
Y i = I + h

i∑

j=1

aij∇yn
F i(yn, θ)

= I + hai1∇yf(tn,yn, θ) + h
i∑

j=2

aij∇yn
Y j∇yf(Tj ,Y j , θ)

∇yn
Y i =

I + hai1∇yf(tn,yn, θ) + h

i−1∑

j=2

aij∇yn
Y j∇yf(Tj , Y j , θ)

 ·

[I − hγ∇yf(Ti, Y i, θ)]−1

Since Y 4 = yn+1, the stage gradient ∇yn
Y 4 is equal to the desired sensitivity.

The parameter sensitivities are derived in a similar fashion:

∇θyn+1 = h

4∑

i=1

bi∇θF i(yn, θ)

= hb1∇θf(tn, yn,θ) + h
3∑

i=2

bi[∇θY i∇yf(Ti,Y i,θ) +∇θf(Ti,Y i,θ)]

+ hγ[∇θY 4∇yf(T4, Y 4,θ) +∇θf(T4,Y 4,θ)]

The ith stage gradient ∇θY i is calculated as:

∇θY i = h
i∑

j=1

aij∇θF i(yn, θ)

= hai1∇θf(tn,yn, θ) + h
i∑

j=2

aij [∇θY j∇yf(Tj ,Y j , θ) +∇θf(Tj ,Y j , θ)]

∇θY i =
[
hai1∇θf(tn, yn,θ) + h

i−1∑

j=2

aij [∇θY j∇yf(Tj , Y j ,θ) +∇θf(Tj , Y j ,θ)]

+ hγ∇θf(Ti, Y i, θ)
]
· [I − hγ∇yf(Ti, Y i,θ)]−1

The stage gradient ∇θY 4 is now equal to the desired parameter sensitivity.
The matrix I − hγ∇yf(Ti, Y i, θ) used in the calculations corresponds to the
iteration matrix when i = 1. The iteration matrix is already calculated and
LU factorized by ESDIRK34 in the state integration. To avoid calculating
and factorizing the matrix at each internal stage (i = 2, 3, 4), the following
approximations are used:

∇yf(Ti, Y i, θ) ' ∇yf(tn,yn, θ), i = 2, 3, 4 (A.6)

A similar approximation is made for the derivative with respect to the parame-
ters:

∇θf(Ti, Y i, θ) ' ∇θf(tn, yn,θ), i = 2, 3, 4 (A.7)

114 Description of PARFIT

Thus, the sensitivities calculated by ESDIRK34 are approximations compared
to the integration scheme used for the state integration. The strong advantage,
however, is that no additional evaluations of the Jacobian are required for the
sensitivity integration, which allows for a very efficient implementation.

The recursion used to update the sensitivities between successive integration
steps is readily derived. Observing that yn+2 = yn+2(yn+1,θ) and differentia-
ting with respect to yn and θ, gives:

∇yn
yn+2 = ∇yn

yn+1∇yn+1
yn+2

∇θyn+2 = ∇θyn+1∇yn+1
yn+2 +∇θyn+2

(A.8)

These equations establish the updating between steps. The state sensitivities
are initialized with the identity matrix, whereas the parameter sensitivities are
assumed initially to be zero corresponding to no parameter dependence of the
initial conditions.

A.2 Algorithmic Outline

The different features of PARFIT were summarized in Chapter 9. This section
provides a brief algorithmic overview. With the tolerance selection mechanism
discussed in Section 6.1.1 the PARFIT algorithm consists mainly of a single
loop, in which LMDER is called with a successively tightening tolerance. The
algorithm is outlined below:
Require: initial guess θ0

Check inputs
Provide default settings if not provided by the user
Load data
for i = 1 to number of tolerance intervals do

Compute optimization tolerances
Compute ESDIRK34 tolerances
Call LMDER

end for
Compute the covariance and correlation matrices
Print results

Return: optimal solution θ∗

The objective function subroutine used by LMDER requires no modifications
from the user, provided that the states are measured directly (no measurement
equation) and that the lc components regressed correspond to the first lc com-
ponents of the state vector. An outline of the objective function subroutine is
given below:

A.3. Documentation 115

Require: current iterate θk, array of data, weight factors and inputs
Set initial values for the DAEs
for j = 1 to number of data sets do

Initialize sensitivity arrays
Compute initial step length for ESDIRK34
for i = 1 to number of experimental time values do

Set t and tfinal

Integrate DAEs + sensitivity equations from t to tfinal using ESDIRK34
Compute residuals
Compute Jacobian of residuals

end for
end for
if regularization then

Compute contribution to residual vector
Compute contribution to Jacobian

end if
Return: vector of residuals r(θk), Jacobian of residuals J(θk)

At each sampling instant the integrator is stopped to provide the model output
in order to form the residual. Frequent sampling of the system requires frequent
interruption of the integrator. Being a one-step method, ESDIRK34 does not
suffer particularly from these restarts. Moreover, the last normal stepsize2

computed in the current integration interval is used as the first stepsize in the
next interval, which greatly reduces the number of failed steps.

A.3 Documentation

This section serves as documentation for PARFIT. The interconnections be-
tween the subroutines are illustrated in Figure A.1. Subroutines in grey must
be supplied by the user. The DFAULT subroutine provides default settings for
the optimization. DFAULT may, optionally, be called by the user before call-
ing PARFIT, if changes to the default settings are to be made. PARFIT calls
LMDER, which in each iteration calls OBJFUN to evaluate the residual func-
tions and the Jacobian of the residual functions. For each data set OBJFUN
calls BUILD OBJ that provides the contribution to the residual vector and the
Jacobian. ESDIRK34 is used to integrate the model equations and to calculate
derivative information. The user must provide the FUN and JAC subroutines
computing the right-hand-side functions of the DAEs and the Jacobian of the
DAE system, respectively. JAC must also return the partial derivatives with
respect to the parameters being estimated. An option exists for approxima-
ting the Jacobian of the DAEs and the partial derivatives with respect to the
parameters by finite difference quotients. In this case JAC is just a dummy
subroutine.

Before termination, PARFIT computes the covariance matrix for the parame-
ters. The Cholesky factorization of the final Hessian approximation is available

2That is, the second to last in the stepsize sequence, since the last step is computed as
h = tfinal − t.

116 Description of PARFIT

text

MAIN

PARFIT

LMDER

OBJFUN

ESDIRK34

FUN JAC

DFAULT

DPOTRS

LAPACK

(Optional)

BUILD_OBJ

Figure A.1. Hierarchy of subroutines. The user must supply the MAIN program
as well as the FUN and JAC (optional) subroutines computing the right-hand-side
functions of the DAEs and the Jacobian of the DAE system, respectively.

from LMDER. The LAPACK subroutine DPOTRS is used to invert the Hes-
sian.

The user must provide data files containing measurements, weight factors and
inputs. Each data file must be organized as follows:

t1 ỹ1(t1) w11 ỹ2(t1) w12 · · · ỹlc(t1) w1lc u11 · · · u1lu

t2 ỹ1(t2) w21 ỹ2(t2) w22 · · · ỹlc(t2) w2lc u21 · · · u2lu
...

...
...

...
... · · · · · · ...

tlt ỹ1(tlt) wlt1 ỹ2(tlt) wlt2 · · · ỹlc(tlt) wltlc ult1 · · · ultlu

Thus, the first column contains the values of the independent variable. The next
2 · lc columns contain measurements and weights, whereas the last lu columns
contain inputs. The inputs are optional. Each data file must contain lu different
inputs along with measurements of lc components. The number of sampling
instants, lt, can vary from data set to data set.

PARFIT uses a derived data type to store the data. In the MAIN program
the user must specify an array of type EXPERIMENT according to the number
of data sets, and subsequently specify the entries FILE NAME and LT in each
EXPERIMENT. For example, if two data sets are available containing measure-
ments at 12 and 16 sampling instants, respectively, then the following lines
must be included in the MAIN program:

A.3. Documentation 117

TYPE(EXPERIMENT) EX(2)
...
EX(1)%FILE_NAME = ’DATA_SET_1.TXT’
EX(1)%LT = 12
EX(2)%FILE_NAME = ’DATA_SET_2.TXT’
EX(2)%LT = 16

The maximum length of the FILE NAME character string is 30. The EX data
structure is passed to PARFIT in the argument list.

Below, a description is given of the individual subroutines requiring attention
from the user. LMDER and ESDIRK34 are not described, but a description can
be found in the header of each subroutine. For each subroutine described, the
syntax when called is given, together with a short description of the subroutine
functionality and the arguments (names, intent and types) involved when calling
the subroutine.

PARFIT

Syntax : CALL PARFIT(N,X,Y0,EX,FUN,JAC,COV,IW,W,RPAR,IPAR)

Description : PARFIT estimates parameters and initial conditions
in systems described by index one differential-algebraic
equations using a weighted least squares criterion.

Dependencies : LMDER, DFAULT, DPOTRS (LAPACK)

Arguments : N (input) INTEGER. Number of parameters to
estimate. If initial conditions are estimated, N
should include the number of initial conditions.

X (input/output) DOUBLE PRECISION AR-
RAY, dimension (N). On entry X holds the initial
guess for the parameters, and on exit X holds the
final parameter estimates.

Y0 (input) DOUBLE PRECISION ARRAY, di-
mension (NN,LD). Initial values for dependent
variables in the DAE system (in case of alge-
braic equations, use the switch IW(15) to spec-
ify wether the initial values are consistent). The
initial conditions corresponding to each data set
are stored in the columns of Y0. If the initial
conditions are to be estimated from data, Y0 will
hold the estimated values on output. Initial con-
dition estimation is only an option for pure ODE
systems. If estimated, a starting guess for the
initial conditions must be provided in X follow-
ing the other parameters. That is, the first N-NN
elements of X are reserved for “normal” parame-
ters, whereas the last NN elements are used for
the initial conditions.

118 Description of PARFIT

EX (input) Derived data structure of type
’EXPERIMENT’, dimension (LD). The user
must specify the name and length of each data
file. The following lines should be included in
the calling program:

TYPE(EXPERIMENT) EX(ld)

...

EX(1)%FILE_NAME = ’<< NAME_OF_DATA_FILE_1 >>’

EX(1)%LT = LT_1

...

EX(LD)%FILE_NAME = ’<< NAME_OF_DATA_FILE_LD >>’

EX(LD)%LT = LT_LD

FUN (input) Name of subroutine computing the
right-hand-side functions of the DAE system.
See specification of FUN.

JAC (input) Name of subroutine computing the Ja-
cobian of the DAE system as well as the partial
derivatives with respect to the parameters being
estimated. See specification of JAC. A dummy
subroutine is supplied, if the option for numeri-
cal difference derivatives is used.

COV (output) DOUBLE PRECISION ARRAY, di-
mension (N,N). Estimated covariance matrix for
the parameters.

IW (input/output) INTEGER ARRAY, dimension
(NN**2+N+30). Integer working space. The first
30 elements of IW are used to specify settings
for PARFIT and to store computational statis-
tics. The user must specify IW(1)-IW(6) and
optionally IW(7)-IW(15):

IW(1) (=0) Default settings are used in the parameter
estimation. PARFIT calls DFAULT(IW,W) that
specifies defaults values.
(=1) User has made separate call to DFAULT
and subsequently changed some of the values in
IW or W.

IW(2) (=NN) Dimension of the DAE system.

IW(3) (=ND) Number of differential equations. If pure
ODE system : ND = NN.

IW(4) (=LU) Number of inputs. Each file must contain
the same number of inputs. If no inputs : LU =
0.

A.3. Documentation 119

IW(5) (=LC) Number of components regressed. It is
assumed in PARFIT that the first LC compo-
nents of the state vector are measured. That is,
the first column of measurements in the datafile
contains measurements of the first component of
the state vector

IW(6) (=LD) Number of data sets. The required struc-
ture is specified above.

The remaining entries in IW can be altered after
call to DFAULT. The default values are marked
with an ’*’:

IW(7) (=1*) Internal scaling of parameters.
(=2) Scale factors are provided in elements
W(31+N)-W(30+2*N).

IW(8) (=0) No computation of the covariance and cor-
relation matrices.
(=1*) The covariance and correlation matrices
are computed.

IW(9) (=500*) Maximum number of objective function
evaluations.

IW(10) (=0) No printing of results.
(=1*) Results and computational statistics are
printed.

IW(11) (=2*) Number of tolerance subintervals.

IW(12) (=0*) Initial conditions are not estimated.
(=1) Initial conditions are estimated along
with the problem parameters (only for ODE
systems).

IW(13) (=0) Numerical approximation of the DAE sys-
tem Jacobian and the partial derivatives with
respect to parameters.
(=1*) Analytic Jacobian and partial derivatives
with respect to parameters are provided in sub-
routine JAC.

IW(14) (=0*) Initial conditions for DAEs are consistent.
(=1) An internal consistency calculation is per-
formed by ESDIRK34 in the first call in each
objective function evaluation, and whenever a
discontinuity is present (due to a discontinuous
input profile).

120 Description of PARFIT

IW(15) (=0*) No regularization is used.
(=1) Regularization weights are provided in
W(31)-W(30+N). The regularized optimization
problem is:

min sum { 1/2 * W_i**2 * R_i**2 } +
P i
sum { 1/2 * WREG_j * ((X_j - X0_j)/X0_j,ref)**2 }
j

in which WREG j denotes the regularization
weights, whereas X0 j,ref denotes reference
values for X j chosen as the order of magni-
tude for the individual parameter. By default
X0 j,ref = X0 j meaning that the X0 j,ref’s
need not be specified.
(=2) As for IW(15)=1, but with user speci-
fied reference values. The X0 j,ref’s must be
stored in W(31+2*N)-W(30+3*N) before calling
PARFIT.

On exit, the following statistics are stored in IW:

IW(21) Number of objective function evaluations.

IW(22) Number of Jacobian evaluations (of residual
functions).

IW(23) Number of integration steps (accepted +
rejected).

IW(24) Number of rejected steps.

IW(25) Number of times diverged in Newton iteration.

IW(26) Number of rhs function evaluations.

IW(27) Number of Jacobian evaluations (of DAE
system).

IW(28) Number of LU factorizations.

IW(29) Number of back substitutions.

W (input/output) DOUBLE PRE-
CISION ARRAY, dimension
(6*NN**2+11*NN+7*N*NN+24+8*N+N*M+2*M).
Work space for LMDER and ESDIRK34.
User may optionally specify W(1)-W(5) (else
specified by DFAULT):

W(1) (1.D-4*) Tolerance related to relative error in
the objective function value (see Eq. (5.2)).

W(2) (1.D-4*) Tolerance related to relative tolerance
in the solution (see Eq. (5.3)).

A.3. Documentation 121

W(3) (1.D-4*) Orthogonality between residual vector
and columns of Jacobian (see Eq. (5.4)).

W(4) (1*) Factor related to initial step bound in opti-
mizer. If W(4) is decreased, a more conservative
step is taken initially.

RPAR,
IPAR

(input) Real and integer parameter arrays,
which can be used for communication between
the calling program and the FUN and JAC sub-
routines. The first N elements of RPAR are used
to store those parameters being estimated and
therefore they need not be set before calling
PARFIT. The inputs from the data sets are
passed in RPAR(N+1)-RPAR(N+LU). (The initial
conditions are not stored in RPAR, meaning that
the inputs are stored following the problem pa-
rameters). Any parameters to be used in FUN
or JAC, which are not estimated, must be stored
after RPAR(N+LU). RPAR and IPAR must be de-
clared in the calling program with the appropri-
ate sizes.

FUN

Syntax : CALL FUN(NN,ND,T,Y,WOUT,F,RPAR,IPAR)

Description : Subroutine for computing the right-hand-side functions
of the DAE system.

Arguments : NN (input) INTEGER. Dimension of the DAE
system.

ND (input) INTEGER. Number of differential
equations.

T (input) DOUBLE PRECISION. Current value
of independent variable.

Y (input) DOUBLE PRECISION ARRAY, di-
mension (NN). Current value(s) of dependent
variable(s).

WOUT (output) DOUBLE PRECISION ARRAY. Op-
tional array for additional output. Must be
declared with the desired length in the calling
program.

F (output) DOUBLE PRECISION ARRAY, di-
mension (NN). The first ND elements of F are the
right-hand-side function values of the differen-
tial equations. The last NN-ND elements are the
residuals of the algebraic equations.

122 Description of PARFIT

RPAR,
IPAR

See description above.

JAC

Syntax : CALL JAC(NN,ND,N,T,Y,DFUN,DFDP,RPAR,IPAR)

Description : Subroutine for computing Jacobian of the DAE system
as well as the partial derivatives with respect to the
parameters being estimated.

Arguments : NN (input) INTEGER. Dimension of the DAE
system.

ND (input) INTEGER. Number of differential
equations.

N (input) INTEGER. Number of parameters being
estimated.

T (input) DOUBLE PRECISION. Current value
of independent variable.

Y (input) DOUBLE PRECISION ARRAY, di-
mension (NN). Current value(s) of dependent
variable(s).

DFUN (output) DOUBLE PRECISION ARRAY, di-
mension (NN,NN). Jacobian of DAE system. The
structure of the Jacobian is:

|----- ND -----|---- NA -----|
_ _ ___

| | |
| dF / dY dG / dY | ND
| | _|_

J = | | |
| dF / dZ dG / dZ | NA
|_ _| _|_

in which NA=NN-ND. F and G denote the vectors
of functions describing the differential and al-
gebraic equations, respectively, whereas Y and
Z denote differential and algebraic variables,
respectively.

DFDP (output) DOUBLE PRECISION ARRAY, di-
mension (N,NN). Partial derivatives with respect
to the parameters being estimated.

RPAR,
IPAR

See description above.

A.3. Documentation 123

DFAULT

Syntax : CALL DFAULT(IW,W)

Description : Subroutine for specifying default settings to be used in
PARFIT. If not called by the user, DFAULT is called
by PARFIT. The value of IW(1) determines wether
PARFIT will call DFAULT.

Arguments : IW (output) INTEGER ARRAY. See description
above.

W (output) DOUBLE PRECISION ARRAY. See
description above.

A.3.1 List of Subroutines

Parameter esti-
mation

Optimization Differential equa-
tion solution

Files parfit.for lmder.for
lmderconsist.for

esdirk34dae.for

Subroutines parfit

objfun

build obj

dfault

lmder
lmderconsist

esdirk34
esdirk34core
sens
hstart
consist
fcn con

Auxiliary
files

dpotrs.for lmder aux.for esdirk34 aux.for

Subroutines/
functions

dpotrs qrfac
qrsolv
lmpar
enorm
dpmpar

dgetrf
dgetrs
dlaswp
dgetf2
dgemm
dtrsm
dger
dscal
dnrm2
idamax
lsame
xerbla

Table A.5. Complete list of files and subroutines/functions in the PARFIT project.
Subroutines developed as part of the work presented in this thesis are marked in
grey. The subroutines marked in blue are MINPACK routines, which have been
modified, whereas the subroutines marked in red are routines for the ESDIRK34
sensitivity tailored differential equation solver presented in Kristensen et al. (2004a).
The remaining subroutines are LAPACK/BLAS/MINPACK library routines.

124 Description of PARFIT

The PARFIT program was developed using the Compaq Visual Fortran 6.1.A
compiler. A complete list of the files and subroutines/functions in the PARFIT
project is given Table A.5. All source files are included on the CD-ROM at the
back of this thesis along with driver routines for the gas-oil cracking problem
and the Dow Chemicals problem. The CD contains a Visual Fortran workspace
with two projects, one for each test problem.

A.3.2 Code Listings

The source code for the key subroutines PARFIT, OBJFUN, BUILD OBJ and
DFAULT is listed below:

MODULE MODUL
∗∗∗
∗∗∗ ∗∗∗
∗∗∗ MODULE WITH DERIVED DATA TYPE USED TO STORE DATA ∗∗∗

5 ∗∗∗ ∗∗∗
∗∗∗

TYPE EXPERIMENT
CHARACTER∗ 30 FILE NAME
INTEGER LT

10 DOUBLE PRECISION, DIMENSION(:) , POINTER : : PTRT
DOUBLE PRECISION, DIMENSION(: , :) , POINTER : : PTRY
DOUBLE PRECISION, DIMENSION(: , :) , POINTER : : PTRW
DOUBLE PRECISION, DIMENSION(: , :) , POINTER : : PTRU

END TYPE
15 PUBLIC EXPERIMENT

END MODULE MODUL

SUBROUTINE PARFIT(N,X,Y0 ,EX,FUN,JAC,COV,IW,W,RPAR, IPAR)
∗∗∗

20 ∗∗∗ ∗∗∗
∗∗∗ PARAMETER ESTIMATION SUBROUTINE ∗∗∗
∗∗∗ ∗∗∗
∗∗∗

USE MODUL
25 IMPLICIT DOUBLE PRECISION (A−H,O−Z)

INTEGER IW(∗) , IPAR(∗) ,IODE(20) , ISENSPAR(N)
DOUBLE PRECISION X(N) ,Y0(IW(2) ,∗)
DOUBLE PRECISION W(∗) ,COV(N,∗) ,RPAR(∗)

30 LOGICAL FIRST
TYPE(EXPERIMENT) EX(IW(6))
EXTERNAL FUN,JAC,OBJFUN,LMDER

C−−−−−LOCAL VARIABLES:
DOUBLE PRECISION CORR(N,N) ,X0(N)

35
C−−−−−PROVIDE DEFAULT VALUES:

IF (IW(1) .EQ. 0) CALL DFAULT(IW,W)
NN = IW(2)
ND = IW(3)

40 LU = IW(4)
LC = IW(5)
LD = IW(6)
IC = IW(12)
IREG = IW(15)

45
C−−−−− SPECIFY TOLERANCES FOR LMDER AND ESDIRK34 :

NTOL = IW(11)
FTOLL = W(1)
XTOLL = W(2)

50 GTOLL = W(3)

C−−−−−CHECK INPUTS:
IF ((IC .EQ. 1) .AND. (NN .NE. ND)) THEN

WRITE(∗ , ’ (1A,X, I2) ’) ’ERROR : IW(12) = ’ , IC
55 WRITE(∗ , ’ (1A,X) ’) ’ INITIAL CONDITION ESTIMATION IN SYSTEMS

& WITH ALGEBRAIC EQUATIONS IS NOT SUPPORTED’
RETURN

END IF
IF ((IREG .NE. 0) .AND. (IREG .NE. 1) .AND. (IREG .NE. 2)) THEN

60 WRITE(∗ , ’ (1X,A, I2) ’) ’ INVALID VALUE : IW(15) = ’ ,IW(15)
RETURN

END IF
M = 0
DO I = 1 ,LD

65 M = M + EX(I)%LT
END DO
M = LC∗M
IF (IREG .GE. 1) M = M+N

70

A.3. Documentation 125

C−−−−− SETTINGS FOR DAE SOLVER:
DO I = 1 ,20

IODE(I) = 0
END DO

75 IF (IW(1 3) .EQ. 0) THEN
IODE(2) = 0 ! (= 0) : NUMERICAL JACOBIAN
DO I = 1 ,N−IC∗LD∗ND

ISENSPAR(I) = I
END DO

80 ELSE
IODE(2) = 1 ! (= 1) : ANALYTIC JACOBIAN

END IF
IODE(4) = 1 ! (= 1) : SENSITIVITIES ARE CALCULATED
IODE(5) = N−IC∗LD∗ND ! : NUMBER OF SENSITIVITY PARAMETERS

85
C−−−−−LOAD DATA:

DO I = 1 ,LD
OPEN(UNIT=20,FILE=EX(I)%FILE NAME)
LT = EX(I)%LT

90 ALLOCATE (EX(I)%PTRT(LT))
ALLOCATE (EX(I)%PTRY(LT,LC))
ALLOCATE (EX(I)%PTRW(LT,LC))
IF (LU .GT. 0) THEN

ALLOCATE (EX(I)%PTRU(LT,LU))
95 END IF

DO J = 1 ,LT
READ(20 ,∗) EX(I)%PTRT(J) ,

& (EX(I)%PTRY(J ,K) , EX(I)%PTRW(J ,K) , K=1,LC) ,
& (EX(I)%PTRU(J ,K) , K=1,LU)

100 END DO
CLOSE(20)

END DO

C−−−−−STORE INITIAL PARAMETER VECTOR:
105 DO I = 1 ,N

X0(I) = X(I)
END DO

C−−−−−PREPARE CALL TO OPTIMIZER:
110 N0 = 1 !

N1 = N0+30 ! wreg (LMDER)
NN1 = N1+N ! d i a g (LMDER)
NN2 = NN1+N ! x r e f (LMDER)
N2 = NN2+N ! f v e c (LMDER)

115 N3 = N2+M ! f j a c (LMDER)
N4 = N3+N∗M ! q f t (LMDER)
N5 = N4+N ! wa1 (LMDER)
N6 = N5+N ! wa2 (LMDER)
N7 = N6+N ! wa3 (LMDER)

120 N8 = N7+N ! wa4 (LMDER)
N9 = N8+M ! A (ESDIRK34)
N10 = N9+NN∗∗2 ! B (ESDIRK34)
N11 = N10+N∗NN ! WORK (ESDIRK34)
CALL CPU TIME(T2)

125 DO I = 1 ,NTOL
IF (IW(1 0) .EQ. 1) THEN

WRITE(∗ , ’ (1X,A, I1) ’) ’ INTERVAL NO. ’ , I
END IF
FTOL = FTOLL∗∗(DBLE(I)/DBLE(NTOL))

130 XTOL = XTOLL∗∗(DBLE(I)/DBLE(NTOL))
GTOL = GTOLL∗∗(DBLE(I)/DBLE(NTOL))
RTOL = 1.D−4∗MIN(FTOL,MIN(XTOL,GTOL))
ATOL = RTOL
CALL LMDER(OBJFUN,FUN,JAC,M,N,X,X0 ,Y0 ,EX,W(N2) ,W(N3) ,M,FTOL,

135 & XTOL,GTOL,IW(9) ,W(NN1) ,W(N1) ,IW(7) ,W(4) , 1 , IFLAG,NFEV,NJEV,
& IW(N1) ,W(N4) ,W(N5) ,W(N6) ,W(N7) ,W(N8) ,W(N9) ,W(N10) ,W(N11) ,
& IW(NN1) ,IW(N0) ,W(NN2) ,IODE, ISENSPAR,RTOL,ATOL,RPAR, IPAR)

FIRST = .FALSE.
IW(21) = IW(21) + NFEV

140 IW(22) = IW(22) + NJEV
IF (IFLAG .GT. 4) THEN

WRITE(∗ , ’ (1X,A, I1 , 1X,A) ’) ’ERROR CODE: ’ , IFLAG,
& ’− SEE HEADER OF LMDER FOR EXPLANATION OF ERROR CODE’

RETURN
145 END IF

END DO
CALL CPU TIME(T1)
DO I = 1 ,N−ND∗LD∗IC

RPAR(I) = X(I)
150 END DO

IF (IC .EQ. 1) THEN
NTMP = N−LD∗LC
DO J = 1 ,LD

DO I = 1 ,ND
155 Y0(I , J) = X(NTMP+(J−1)∗ND+I)

END DO
END DO
END IF

160 C−−−−−COMPUTE COVARIANCE AND CORRELATION MATRIX:
IF (IW(8) .EQ. 1) THEN

DO I = 1 ,N
DO J = 1 ,N

126 Description of PARFIT

COV(J , I) = 0 .D0
165 IF (I .EQ. J) COV(I , I) = 1 .D0

END DO
END DO
CALL DPOTRS(’U’ ,N,N,W(N3) ,M,COV,N,INFOO)
SCALE = ENORM(M,W(N2))∗∗2/(M−N)

170 DO I = 1 ,N
DO J = 1 ,N

COV(I , J) = COV(I , J)∗SCALE
CORR(I , J) = COV(I , J)

END DO
175 END DO

DO I = 1 ,N
SQ = SQRT(COV(I , I))
DO J = 1 ,N

CORR(I , J) = CORR(I , J)/SQ
180 CORR(J , I) = CORR(J , I)/SQ

END DO
END DO

END IF

185 C−−−−−PRINT STATISTICS :
IF (IW(1 0) .EQ. 1) THEN

WRITE(∗ ,∗)
WRITE(∗ ,∗) ’SUMMARY OF RESULTS FROM PARFIT : ’
WRITE(∗ ,∗)

190 WRITE(∗ , 21) ’TOTAL COMPUTATION TIME : ’ , T1−T2 , ’ s ec . ’

WRITE(∗ ,∗)
WRITE(∗ ,∗) ’EXECUTION STATUS : ’ , IFLAG
WRITE(∗ , 22) ’FINAL OBJECTIVE FUNCTION VALUE : ’ ,

195 & ENORM(M,W(N2))∗∗2/2 .D0
IF (IREG .EQ. 1) THEN

WRITE(∗ , 2 2) ’ DUE TO SQUARED RESIDUALS : ’ ,
& ENORM(M−N,W(N2))∗∗2/2 .D0

WRITE(∗ , 2 2) ’ DUE TO REGULARIZATION : ’ ,
200 & ENORM(N,W(N2+M−N))∗∗2/2 .D0

END IF
WRITE(∗ ,∗) ’FINAL PARAMETERS : ’
WRITE(∗ ,∗)
DO I = 1 ,N

205 WRITE(∗ , ’ (1X,A, I2 , 1X,A, E13 . 6) ’)
& ’k ’ , I , ’ = ’ ,X(I)

END DO
WRITE(∗ ,∗)
WRITE(∗ ,∗) ’COVARIANCE MATRIX : ’

210 DO I = 1 ,N
WRITE(∗ , ’ (1X,A, I2 ,100E12 . 4) ’) ’ row ’ , I , (COV(I , J) , J=1, I)

END DO
WRITE(∗ ,∗)
WRITE(∗ ,∗) ’CORRELATION MATRIX : ’

215 DO I = 1 ,N
WRITE(∗ , ’ (1X,A, I2 ,100E12 . 4) ’) ’ row ’ , I , (CORR(I , J) , J=1, I)

END DO

WRITE(∗ ,∗)
220 WRITE(∗ ,∗) ’OBJECTIVE FUNCTION EVALUATIONS : ’ , IW(21)

WRITE(∗ ,∗) ’JACOBIAN EVALUATIONS (LMDER) : ’ , IW(22)
WRITE(∗ ,∗) ’TOTAL NUMBER OF STEPS : ’ , IW(23)
WRITE(∗ ,∗) ’NUMBER OF REJECTED STEPS : ’ , IW(24)
WRITE(∗ ,∗) ’NUMBER OF TIMES DIVERGED : ’ , IW(25)

225 WRITE(∗ ,∗) ’NUMBER OF FUNCTION EVALUATIONS : ’ , IW(26)
WRITE(∗ ,∗) ’NUMBER OF JACOBIAN EVALUATIONS : ’ , IW(27)
WRITE(∗ ,∗) ’NUMBER OF LU FACTORIZATIONS : ’ , IW(28)
WRITE(∗ ,∗) ’NUMBER OF BACK SUBSTITUTIONS : ’ , IW(29)

21 FORMAT(1X,A, F12 . 4 , 1X,A)
230 22 FORMAT(1X,A, E14 . 6)

END IF
END ! SUBROUTINE PARFIT

SUBROUTINE OBJFUN(M,LU,LC,LD,N,NN,ND,X,X0 ,Y0 ,EX,WREG,FVEC,FJAC,
235 & LDJAC, IFLAG,FUN,JAC,WORK,IWORK,A,B, ISTAT,XREF,

& IODE, ISENSPAR,RTOL,ATOL,RPAR, IPAR)
∗∗∗
∗∗∗ ∗∗∗
∗∗∗ OBJECTIVE FUNCTION SUBROUTINE ∗∗∗

240 ∗∗∗ ∗∗∗
∗∗∗

USE MODUL

IMPLICIT DOUBLE PRECISION (A−H,O−Z)
245

INTEGER IWORK(NN∗∗2) ,IODE(20) , ISTAT(30) , IPAR(∗) , ISENSPAR(∗)
DOUBLE PRECISION X(N) ,X0(N) ,FVEC(M) ,FJAC(LDJAC,N) ,WREG(N)
DOUBLE PRECISION WORK(6∗NN∗∗2+11∗NN+4 + 5∗N∗NN) ,XREF(N)
DOUBLE PRECISION Y0(NN,∗) ,A(NN,NN) ,B(N−ISTAT(12)∗ND∗LD,NN) ,RPAR(∗)

250 TYPE(EXPERIMENT) EX(LD)
C−−−−−LOCAL VARIABLES:

DOUBLE PRECISION Y0TEMP(NN,LD) ,Y0CON(NN)
EXTERNAL FUN,JAC

255 IC = ISTAT(12) ! SWITCH FOR INITIAL CONDITION ESTIMATION
ICON = ISTAT(14) ! SWITCH FOR CONSISTENCY CALCULATION

A.3. Documentation 127

IREG = ISTAT(15) ! SWITCH FOR USE OF REGULARIZATION

DO I = 1 ,N−ND∗LD∗IC
260 RPAR(I) = X(I)

END DO

IF ((IC .EQ. 1) .AND. (IFLAG .EQ. 2)) THEN
NTMP = N−ND∗LD

265 DO J = 1 ,LD
DO I = 1 ,ND

Y0TEMP(I , J) = X(NTMP+(J−1)∗ND+I)
END DO

END DO
270 DO J = NTMP+1,N

DO I = 1 ,M
FJAC(I , J) = 0 .D0

END DO
END DO

275 ELSE
DO J = 1 ,LD

DO I = 1 ,NN
Y0TEMP(I , J) = Y0(I , J)

END DO
280 END DO

END IF
IF (IREG .EQ. 1) THEN

DO I = 1 ,N
XREF(I) = X0(I)

285 END DO
END IF
IENTRY = 0
IF (IFLAG .EQ. 2) THEN ! CALCULATE RESIDUALS AND JACOBIAN AT CURRENT X

DO I = 1 ,LD
290 CALL BUILD OBJ(M,N,LD, I , IENTRY,LC,LU, IC ,NN,ND,X,X0 ,

& Y0TEMP(1 , I) ,FVEC,FJAC,LDJAC,FUN,JAC,WORK,IWORK,
& A,B, ISTAT, IODE, ISENSPAR,RTOL,ATOL,RPAR, IPAR,
& EX(I)%PTRT,EX(I)%PTRY,EX(I)%PTRW,EX(I)%PTRU,EX(I)%LT,
& WREG,XREF,Y0CON)

295 IENTRY = IENTRY + LC∗EX(I)%LT
IF ((ND .LT . NN) .AND. (ICON .EQ. 1)) THEN

DO J = ND+1,NN ! SAVE CONSISTENT INITIAL VALUES
Y0(J , I) = Y0CON(J)

END DO
300 END IF

END DO
IF (IREG .GE. 1) THEN

CALL BUILD OBJ(M,N,LD, 0 ,IENTRY,LC,LU, IC ,NN,ND,X,X0 ,
& Y0TEMP,FVEC,FJAC,LDJAC,FUN,JAC,WORK,IWORK,

305 & A,B, ISTAT, IODE, ISENSPAR,RTOL,ATOL,RPAR, IPAR,
& EX(1)%PTRT,EX(1)%PTRY,EX(1)%PTRW,EX(1)%PTRU,EX(1)%LT,
& WREG,XREF,Y0CON)

END IF
ELSEIF (IFLAG .EQ. 0) THEN

310 IF (ISTAT(1 0) .EQ. 1) THEN
WRITE(∗ , ’ (1X,A,4E12 . 5) ’) ’F (X) = ’ ,ENORM(M,FVEC)∗∗2/2 .D0

END IF
END IF

315 RETURN
END ! SUBROUTINE OBJFUN

SUBROUTINE BUILD OBJ(M,N,LD, ILD ,IENTRY,LC,LU, IC ,NN,ND,X,X0 ,Y0 ,
& FVEC,FJAC,LDJAC,FUN,JAC,WORK,IWORK,A,B,

320 & ISTAT, IODE, ISENSPAR,RTOL,ATOL,RPAR, IPAR,
& T,Y,W,U,LT,WREG,XREF,Y0CON)

∗∗∗
∗∗∗ ∗∗∗
∗∗∗ AUXILIARY SUBROUTINE USED BY OBJFUN FOR BUILDING ∗∗∗

325 ∗∗∗ THE OBJECTIVE FUNCTION + GRADIENT FOR ONE DATA SET . ∗∗∗
∗∗∗ ∗∗∗
∗∗∗

IMPLICIT DOUBLE PRECISION (A−H,O−Z)

330 DOUBLE PRECISION X(N) ,X0(N) ,FVEC(M) ,FJAC(LDJAC,N) ,WREG(N)
DOUBLE PRECISION WORK(6∗NN∗∗2+11∗NN+4 + 5∗N∗NN) ,XREF(N)
DOUBLE PRECISION Y0(NN) ,A(NN,NN) ,B(N−IC∗LD∗ND,NN) ,RPAR(∗)
DOUBLE PRECISION Y0CON(NN)
DOUBLE PRECISION T(LT) ,Y(LT,LC) ,W(LT,LC) ,U(LT,∗)

335 INTEGER IWORK(NN∗∗2) ,IODE(20) , ISTAT(30) , IPAR(∗) , ISENSPAR(∗)
EXTERNAL FUN,JAC

LWORK = 6∗NN∗∗2+11∗NN+4 + 5∗N∗NN
LIWORK = NN∗∗2

340 NTMP = LD∗ND∗IC
NTMP2 = N+(ILD−1−LD)∗ND
CALL HSTART(NN,ND,FUN,T,Y0 ,H,WOUT,RTOL,ATOL,0 ,RPAR, IPAR)

C−−−−−RESET A AND B AND FJAC:
345 DO J = 1 ,ND

DO I = 1 ,ND
A(I , J) = 0 .D0
IF (I .EQ. J) A(I , I) = 1 .D0

END DO

128 Description of PARFIT

350 END DO
DO J = 1 ,ND

DO I = 1 ,N−NTMP
B(I , J) = 0 .D0

END DO
355 END DO

IF ((ISTAT(1 4) .EQ. 1) .AND. (ND .LT . NN)) THEN
IODE(6) = 1 ! PERFORM INTERNAL CONSISTENCY CALCULATION IN DAEs

END IF
C−−−−−BUILD RESIDUAL FUNCTIONS + JACOBIAN:

360 IF (ILD .EQ. 0) THEN ! CONTRIBUTION FROM REGULARIZATION
DO I = 1 ,N

JJ = IENTRY+I
FVEC(JJ) = WREG(I)∗ (X(I) − X0(I))/XREF(I)

END DO
365 DO J = 1 ,N

DO I = 1 ,N
I I = IENTRY+I
FJAC(II , J) = 0 .D0
IF (I .EQ. J) FJAC(II , J) = WREG(J)/XREF(J)

370 END DO
END DO

ELSE ! CONTRIBUTION FROM RESIDUALS
DO I = 1 ,LT

IF (I .EQ. 1) THEN ! FIRST MEASUREMENT
375 DO J = 1 ,LC

JJ = I+LT∗(J−1)+IENTRY
FVEC(JJ)=W(I , J)∗ (Y0(J)−Y(I , J))

END DO
DO J = 1 ,LC ! PROVIDE SENSITIVITIES AT INITIAL T

380 JJ = I+LT∗(J−1)+IENTRY
DO K = 1 ,N−NTMP

FJAC(JJ ,K) = 0 .D0
END DO
IF (IC .EQ. 1) THEN

385 DO K = 1 ,ND
IF (K .EQ. J) THEN

FJAC(JJ ,NTMP2+K) = W(I , J)
ELSE

FJAC(JJ ,NTMP2+K) = 0 .D0
390 END IF

END DO
END IF

END DO
GOTO 22

395 END IF
IF (LU .GT. 0) THEN

ICON = 0
DO J = 1 ,LU

RPAR(N−NTMP+J) = U(I−1,J)
400 IF ((I .GT. 2) .AND. (U(I−1,J) .NE. U(I−2,J))) ICON=1

END DO
IF (ICON .EQ. 1) IODE(6) = 2 ! INPUT HAS CHANGED => REINITIALIZE

END IF
TT = T(I−1)

405 TF = T(I)
CALL ESDIRK34(NN,ND,FUN,TT,TF,Y0 ,Y0CON,WOUT, IODE,H,

& RTOL,ATOL,JAC,SOLOUT, ISENSPAR,A,B,WORK,LWORK,
& IWORK,LIWORK,RPAR, IPAR)

! ONLY CONS. CALC. IN FIRST CALL OR IF INPUT HAS CHANGED:
410 IF (ISTAT(1 4) .EQ. 1) IODE(6) = 0

DO J = 21 ,27
ISTAT(J+2) = ISTAT(J+2) + IODE(J−10)

END DO
DO J = 1 ,LC

415 JJ = I+LT∗(J−1)+IENTRY
FVEC(JJ)=W(I , J)∗ (Y0(J)−Y(I , J))

END DO
DO J = 1 ,LC

WW = W(I , J)
420 JJ = I+LT∗(J−1)+IENTRY

DO K = 1 ,N−NTMP
FJAC(JJ ,K) = WW∗B(K, J)

END DO
IF (IC .EQ. 1) THEN

425 DO K = 1 ,ND
FJAC(JJ ,NTMP2+K) = WW∗A(K, J)

END DO
END IF

END DO
430 22 END DO

END IF ! ILD .EQ. 1

30 RETURN
END ! SUBROUTINE BUILD OBJ

435

440

A.3. Documentation 129

SUBROUTINE DFAULT(IW,W)
∗∗∗

445 ∗∗∗ ∗∗∗
∗∗∗ SUBROUTINE PROVIDING DEFAULT SETTINGS TO PARFIT ∗∗∗
∗∗∗ ∗∗∗
∗∗∗
C

450 C Output
C ======
C
C IW INTEGER ARRAY, DIMENSION () : INTEGER VALUES FOR PARFIT.
C

455 C W DOUBLE PRECISION ARRAY, DIMENSION () : DOUBLE PRECISION
C VALUES FOR PARFIT.
C
C==

IMPLICIT DOUBLE PRECISION (A−H,O−Z)
460 INTEGER IW(∗)

DOUBLE PRECISION W(∗)

C−−−−− IW − VALUES:
IW(1) = 1 ! DEFAULT VALUES HAVE BEEN SPECIFIED

465 IW(7) = 1 ! (= 1) : INTERNAL SCALING
! (=2) : SCALING PROVIDED IN ELEMENTS OF W(31+N)−W(30+2∗N)

IW(8) = 1 ! (= 0) : NO COMPUTATION OF COVARINCE OR CORRELATION MATRIX
! (=1) : COMPUTE COVARIANCE MATRIX + CORRELATION MATRIX

IW(9) = 500 ! MAXIMUM NUMBER OF OBJECTIVE FUNCTION EVALUATIONS
470 IW(10) = 1 ! (= 0) : NO PRINTING OF RESULTS

! (=1) : PRINT SUMMARY
IW(11) = 2 ! (= 1) : NUMBER OF TOLERANCE INTERVALS
IW(12) = 0 ! (= 0) : DO NOT ESTIMATE INITIAL CONDITIONS

! (=1) : ESTIMATE INITIAL CONDITION
475 IW(13) = 1 ! (= 0) : NUMERICAL APPROXIMATION TO JACOBIAN + dF/dP

! (=1) : ANALYTIC JACOBIAN + dF/dP
IW(14) = 0 ! (= 0) : INITIAL CONDITIONS FOR DAEs ARE CONSISTENT.

! (=1) : AN INTERNAL CONSISTENCY CALCULATION IS PERFORMED
! BY ESDIRK34 IN THE FIRST CALL IN EACH OBJ EVALUATION

480 IW(15) = 0 ! (= 0) : NO REGULARIZATION
! (=1) : REGULARIZATION WEIGHTS ARE PROVIDED IN W(31)−W(30+N)

DO I = 21 ,30 ! INITIALIZE PART OF IW−ARRAY (FOR STATISTICAL SUMMARY)
IW(I) = 0

485 END DO

C−−−−−W − VALUES :
W(1) = 1.D−4 ! RELATIVE TOLERANCE IN OBJECTIVE FUNCTION VALUE
W(2) = 1.D−4 ! RELATIVE TOLERANCE IN SOLUTION

490 W(3) = 1.D−4 ! ORTHOGONALITY BETWEEN RESIDUAL AND COLUMNS OF JACOBIAN
W(4) = 1.D0 ! FACTOR RELATED TO INITIAL STEP BOUND IN OPTIMIZER

END ! SUBROUTINE DFAULT

A Sample Program

The following is a driver for the parameter estimation problem in the gas-oil
cracking model, which was treated extensively in the first two parts of this the-
sis. Default settings are used, so no separate call is made to DFAULT.

PROGRAM PARAMETER ESTIMATION
∗∗∗
∗∗∗ ∗∗∗
∗∗∗ MAIN DRIVER FOR PARFIT ∗∗∗

5 ∗∗∗ EXAMPLE : GAS−OIL CRACKING PROBLEM ∗∗∗
∗∗∗ ∗∗∗
∗∗∗

USE MODUL

10 IMPLICIT DOUBLE PRECISION (A−H,O−Z)

PARAMETER N = 3 ! NUMBER OF PARAMETERS TO ESTIMATE
PARAMETER LD = 1 ! NUMBER OF DATA SETS
PARAMETER LC = 2 ! NUMBER OF REGRESSED COMPONENTS

15 PARAMETER LU = 0 ! NUMBER OF INPUTS

PARAMETER LT1 = 11 ! NUMBER OF TIME POINTS IN DATA SET 1
PARAMETER M = LC∗LT1 ! NUMBER OF RESIDUAL FUNCTIONS

20 PARAMETER NN = 2 ! DIMENSION OF DAE SYSTEM
PARAMETER ND = 2 ! NUMBER OF DIFFERENTIAL EQUATIONS

PARAMETER LW = 6∗NN∗∗2+11∗NN+7∗N∗NN+24+6∗N+N∗M+2∗M+100 ! SIZE OF REAL WORKING ARRAY
PARAMETER LIW = NN∗∗2+N+30 ! SIZE OF INTEGER WORKING ARRAY

25
INTEGER IW(LIW) ,INFO ODE(20)
DOUBLE PRECISION X(N) ,X0(NN,LD) ,W(LW) ,RPAR(4) ,COV(N,N)

130 Description of PARFIT

DOUBLE PRECISION A(NN,NN) ,B(N,NN) ,Y0CON(NN)

30 TYPE(EXPERIMENT) EX(LD)

EXTERNAL FUN,JAC,SOLOUT

C−−−−− SPECIFY DATA FILES :
35 EX(1)%FILE NAME = ’PARFIT DATA SET1 . txt ’

EX(1)%LT = LT1

C−−−−− INITIAL PARAMETER GUESSES:
X(1) = 1 .D0 ! K1

40 X(2) = 1 .D0 ! K2
X(3) = 1 .D0 ! K3

C−−−−− INITIAL CONDITIONS:
X0(1 , 1) = 1 .D0

45 X0(2 , 1) = 0 .D0

C−−−−−REQUIRED SETTINGS FOR PARFIT:
IW(1) = 0 ! (=0) −> SUBROUTINE DFAULT IS CALLED BY PARFIT
IW(2) = NN

50 IW(3) = ND
IW(4) = LU
IW(5) = LC
IW(6) = LD

55 CALL PARFIT(N,X,X0 ,EX,FUN,JAC,COV,IW,W,RPAR, IPAR)
END ! MAIN PROGRAM PARAMETER ESTIMATION

∗∗∗
∗∗∗ ∗∗∗

60 ∗∗∗ SUBROUTINES FOR ODE/DAE SOLVER ∗∗∗
∗∗∗ ∗∗∗
∗∗∗

SUBROUTINE FUN(N,ND,T,Y,WOUT,F,RPAR, IPAR)
C−−−−−RIGHT−HAND−SIDE FUNCTIONS:

65 IMPLICIT NONE
INTEGER N,ND, IPAR(∗)
DOUBLE PRECISION Y(∗) ,WOUT(∗) ,F(∗) ,RPAR(∗) ,T

C−−−−−LOCAL VARIABLES
DOUBLE PRECISION P1 ,P2 , P3

70
P1 = RPAR(1)
P2 = RPAR(2)
P3 = RPAR(3)

75 F(1) = −(P1+P3)∗Y(1)∗∗2
F(2) = P1∗Y(1)∗∗2 − P2∗Y(2)
RETURN
END ! SUBROUTINE FUN

80 SUBROUTINE JAC(N,ND,NPAR,T,Y,DFUN,DFDU,RPAR, IPAR)
C−−−−− JACOBIAN OF ODE/DAE SYSTEM:

IMPLICIT NONE
INTEGER N,ND,NPAR, IPAR(∗)
DOUBLE PRECISION Y(∗) ,DFUN(N,∗) ,DFDU(NPAR,∗) ,RPAR(∗) ,T

85 C−−−−−LOCAL VARIABLES
DOUBLE PRECISION P1 ,P2 , P3

P1 = RPAR(1)
P2 = RPAR(2)

90 P3 = RPAR(3)

DFUN(1 ,1) = −2.D0∗(P1+P3)∗Y(1)
DFUN(2 , 1) = 0 .D0
DFUN(1 , 2) = 2 .D0∗P1∗Y(1)

95 DFUN(2 ,2) = −P2

DFDU(1 ,1) = −Y(1)∗∗2
DFDU(2 , 1) = 0 .D0
DFDU(3 ,1) = −Y(1)∗∗2

100 DFDU(1 ,2) = Y(1)∗∗2
DFDU(2 ,2) = −Y(2)
DFDU(3 , 2) = 0 .D0
RETURN
END ! SUBROUTINE JAC

105
SUBROUTINE SOLOUT(N,ND,NPAR,T,Y,WOUT,A,B)

C−−−−−OUTPUT SUBROUTINE FOR ESDIRK34
IMPLICIT NONE
INTEGER N,ND, I ,NPAR, J

110 DOUBLE PRECISION Y(∗) ,T,WOUT(∗) ,A(N,∗) ,B(NPAR,∗)

WRITE(14 , 99) T, (Y(I) , I=1,N) , ((B(J , I) , I =1,N) , J=1 ,3)
99 FORMAT(F12 . 6 , 8 F16 . 8)

RETURN
115 END

Abbreviations

BDF Backward differentiation formula
BVP Boundary value problem
DAE Differential-algebraic equation
DIRK Diagonal implicit Runge-Kutta
END External numerical differentiation
ERK Explicit Runge-Kutta
ESDIRK Explicit singly diagonal implicit Runge-Kutta
FIRK Fully implicit Runge-Kutta
IND Internal numerical differentiation
IQR Interquartile range
IVP Initial value problem
LS Least squares
ML Maximum likelihood
NLP Nonlinear programming
ODE Ordinary differential equation
OLS Ordinary least squares
PDE Partial differential equation
QP Quadratic programming
SDIRK Singly diagonal implicit Runge-Kutta
SQP Sequential quadratic programming
SVD Singular value decomposition
TLS Total least squares
WLS Weighted least squares

132 Abbreviations

Nomenclature

Symbol Meaning Dimension

A, b, c,d Matrix/vectors with Runge-Kutta coefficients -
B Hessian approximation m× np × np

c(·) Vector of constraint functions mc

C Covariance matrix for parameter estimates np × np

D Diagonal matrix n× n
E Expectation operator -
f(·) Objective function 1
f(·) Vector of right-hand-side functions for DAE system n
F (·) Vector function for fully implicit DAEs n
h Step size in ODE/DAE solver 1
h Direction in optimization algorithm np

h(·) Vector of functions in measurement equation m
H Hessian matrix m× np × np

i, j, k Indices 1
Im Identity matrix m
J Jacobian matrix m× np

lc Number of components regressed 1
ld Number of data sets 1
lkt Number of measurements of each component 1

in data set k
L(·) Likelihood function 1
m Number of measurements (m = lclt) 1
mc Total number of constraints 1
me Number of equality constraints 1
ms Number of multiple shooting intervals 1
n Number of dependent variables 1
na Number of algebraic variables 1
nd Number of differential variables 1
np Number of parameters 1
nu Number of inputs 1
p(·) Probability density function 1
r(·) Vector of residual functions m
R(·) Stability function for Runge-Kutta methods 1
si ith multiple shooting parameter vector or n

sensitivities with respect to parameter i n
t Independent variable (time) 1

134 Nomenclature

Symbol Meaning Dimension

tm−np Quantile of the t-distribution with 1
m− np degrees of freedom

u Vector of inputs nu

v Vector of weights for independent variable m
V Covariance matrix of measurement errors m×m
w Vector of weights for dependent variables m
wreg Regularization weight 1
y(·) Vector of dependent variables n
ỹ Vector of measurements m
z Vector of algebraic variables na

D Trust region -
I(·) Index set for active inequality constraint -
L(·) Lagrangian function 1
N (µ,V) Gaussian distribution with mean µ and -

covariance matrix V

α Step length parameter 1
δ Vector of residuals related to independent variable m
∆ Radius of trust region 1
ε Vector of measurement errors m

in dependent variables
εm Unit round-off 1
θ Parameter vector np

λ Continuation parameter 1
λ Lagrange multiplier vector mc

µ Levenberg-Marquardt parameter or mean value 1
ξ Vector of measurement errors in m

independent variable
σ, σ2 Standard deviation and variance -
% Trust region parameter 1
τi ith multiple shooting node 1
φ(·) Line search function 1
∇ Differential operator -

References

Al-Baali, M. and Fletcher, R. (1985). Variational Methods for Nonlinear Least
Squares. Journal of the Operational Research Society, 36(5), 405–421.

Al-Baali, M. and Fletcher, R. (1986). An Efficient Line Search for Nonlinear
Least Squares. Journal of Optimization Theory and Applications, 48(3),
359–377.

Alexander, R. (1977). Diagonal Implicit Runge-Kutta Methods for Stiff
O.D.E.’s. SIAM Journal of Numerical Analysis, 14(6), 1006–1021.

Alexander, R. (2003). Design and Implementation of DIRK Integrators for Stiff
Systems. Applied Numerical Mathematics, 46, 1–17.

Bard, Y. (1974). Nonlinear Parameter Estimation. Academic Press, New York,
USA.

Bauer, I.; Bock, H. G.; Körkel, S. and Schlöder, J. P. (2000). Numerical Methods
for Optimum Experimental Design in DAE Systems. Journal of Computa-
tional and Applied Mathematics, 120, 1–25.

Biegler, L. T.; Damiano, J. J. and Blau, G. E. (1986). Nonlinear Parameter
Estimation: A Case Study Comparison. AIChE Journal , 32(1), 29–43.

Bock, H. G. (1981). Numerical Treatment of Inverse Problems in Chemical
Reaction Kinetics. In K. H. Ebert; P. Deuflhard and W. Jäger, editors,
Modelling of Chemical Reaction Systems, pages 102–125. Springer Series in
Chem. Phys.

Bock, H. G. (1983). Recent Advances in Parameter Identification Techniques
for O.D.E. In P. Deuflhard and E. Hairer, editors, Numerical Treatment
of Inverse Problems in Differential and Integral Equations, pages 95–121.
Birkhäuser, Boston, USA.

Brenan, K. E.; Campbell, S. L. and Petzold, L. R. (1996). Numerical Solu-
tion of Initial-Value Problems in Differential-Algebraic Equations. SIAM,
Philadelphia, USA.

Brown, P. N.; Hindmarsh, A. C. and Petzold, L. R. (1998). Consistent Initial
Condition Calculation for Differential-Algebraic Systems. SIAM Journal of
Scientific Computing , 19(5), 1495–1512.

Cameron, I. T. (1983). Solution of Differential-Algebraic Systems Using Dia-
gonal Implicit Runge-Kutta Methods. IMA Journal of Numerical Analysis,
3, 273–289.

Cao, Y.; Li, S. and Petzold, L. (2002). Adjoint Sensitivity Analysis for
Differential-Algebraic Equations: Algorithms and Software. Journal of Com-
putational and Applied Mathematics, 149, 171–191.

136 References

Cao, Y.; Li, S.; Petzold, L. and Serban, R. (2003). Adjoint Sensitivity Analysis
for Differential-Algebraic Equations: The Adjoint DAE System and its Nu-
merical Solution. SIAM Journal of Scientific Computing, 24(3), 1076–1098.

Caracotsios, M. and Stewart, W. E. (1985). Sensitivity Analysis of Initial
Value Problems with Mixed ODEs and Algebraic Equations. Computers
and Chemical Engineering , 9(4), 359–365.

Dennis, J. E. and Schnabel, R. B. (1983). Numerical Methods for Uncon-
trained Optimization and Nonlinear Equations. Prentice-Hall, Englewood
Cliffs, USA.

Dennis, J. E.; Gay, D. M. and Welsch, R. E. (1981). An Adaptive Nonlinear
Least Squares Algorithm. ACM Transactions on Mathematical Software,
7(3), 348–368.

Enright, W. H.; Jackson, K. R.; Nørsett, S. P. and Thomsen, P. G. (1986).
Interpolants for Runge-Kutta Formulas. ACM Transactions on Mathematical
Software, 12(3), 193–218.

Feehery, W. F.; Tolsma, J. E. and Barton, P. I. (1997). Efficient Sensitivity
Analysis of Large-Scale Differential-Algebraic Systems. Applied Numerical
Mathematics, 25, 41–54.

Frandsen, P. E.; Jonasson, K.; Nielsen, H. B. and Tingleff, O. (1999). Uncon-
strained Optimization. Informatics and Mathematical Modelling, Technical
University of Denmark.

Gill, P. E.; Murray, W.; Saunders, M. A. and Wright, M. H. (1986). User’s
Guide for NPSOL: A Fortran Package for Nonlinear Programming. Systems
Optimization Laboratory, Department of Operations Research, Stanford Uni-
versity.

Gronwall, T. H. (1919). Note on the Derivatives with Respect to a Parameter of
the Solutions of a System of Differential Equations. Annals of Mathematics,
20, 292–296.

Hairer, E. and Wanner, G. (1996). Solving Ordinary Differential Equations II .
Springer, second revised edition.

Hairer, E.; Lubich, C. and Roche, M. (1987). Error of Runge-Kutta Methods
for Stiff Problems Studied Via Differential Algebraic Equations. Technical
report, Dept. de Mathématiques, Université de Genève.

Hairer, E.; Nørsett, S. and Wanner, G. (1992). Solving Ordinary Differential
Equations I . Springer, second revised edition.

Hansen, P. C. (1998). Regularization Tools. A Matlab Package for Solution of
Discrete Ill-Posed Problems. Technical report, Informatics and Mathematical
Modelling, Technical University of Denmark.

Hindmarsh, A. C. and Serban, R. (2002). User Documentation for CVODES,
An ODE Solver with Sensitivity Analysis Capabilities. Center for Applied
Scientific Computing, Lawrence Livermore National Laboratory.

References 137

Issanchou, S.; Cognet, P. and Gabassud, M. (2003). Precise Parameter Esti-
mation for Chemical Batch Reactions in Heterogeneous Medium. Chemical
Engineering Science, 58, 1805–1813.

Jørgensen, J. B.; Rawlings, J. B. and Jørgensen, S. B. (2004). Numerical
Solution of Unconstrained Nonlinear Optimal Control Problems. Submitted.

Khorasheh, F.; Kheirolomoom, A. and Mireshghi, S. (2002). Application of
an Optimization Algorithm for Estimating Intrinsic Kinetic Parameters of
Immobilized Enzymes. Journal of Bioscience and Bioengineering, 94(1), 1–
7.

Kristensen, M. R.; Jørgensen, J. B.; Thomsen, P. G. and Jørgensen, S. B.
(2004a). An ESDIRK Method with Sensitivity Analysis Capabilities. Sub-
mitted to Computers and Chemical Engineering.

Kristensen, M. R.; Jørgensen, J. B.; Thomsen, P. G. and Jørgensen, S. B.
(2004b). Extension of ESDIRK34 to DAE Systems. Technical report, De-
partment of Chemical Engineering, Technical University of Denmark.

Kristensen, N. R. (2003). Fed-Batch Process Modelling for State Estimation
and Optimal Control . Ph.D. thesis, Technical University of Denmark.

Kröner, A.; Marquardt, W. and Gilles, E. D. (1992). Computing Consistent
Initial Values for Differential-Algebraic Equations. Computers and Chemical
Engineering , 16, 131–138.

Kuhlmann, C.; Bogle, I. D. L. and Chalabi, Z. S. (1998). Robust Operation of
Fed Batch Fermenters. Bioprocess Engineering , 19, 53–59.

Law, V. J. and Sharma, Y. (1997). Computation of the Gradient and Sensitivity
Coefficients in Sum of Least Squares Minimization Problems with Differential
Equation Models. Computers and Chemical Engineering, 21(12), 1471–1479.

Leineweber, D. B. (1995). Analyse und Restrukturierung Eines Verfahrens
Zur Direkten Lösung Von Optimal-Steuerungsproblemen. Master’s thesis, In-
terdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität
Heidelberg.

Leis, J. R. and Kramer, M. A. (1988). The Simultaneous Solution and Sensitiv-
ity Analysis of Systems Described by Ordinary Differential Equations. ACM
Transactions on Mathematical Software, 14(1), 45–60.

Levenberg, K. (1944). A Method for the Solution of Certain Nonlinear Problems
in Least Squares. Quarterly of Applied Mathematics, 2, 164–168.

Luksan, L. and Spedicato, E. (2000). Variable Metric Methods for Uncon-
strained Optimization and Nonlinear Least Squares. Journal of Computa-
tional and Applied Mathematics, 124, 61–95.

Madsen, K. (1988). A Combined Gauss-Newton and Quasi-Newton Method for
Nonlinear Least Squares. Technical report, Informatics and Mathematical
Modelling, Technical University of Denmark.

138 References

Madsen, K.; Nielsen, H. B. and Tingleff, O. (1999). Methods for Nonlinear Least
Squares. Informatics and Mathematical Modelling, Technical University of
Denmark.

Majer, C.; Marquardt, W. and Gilles, E. D. (1995). Reinitialization of DAE’s
After Discontinuities. Computers and Chemical Engineering, 19, 507–512.

Maly, T. and Petzold, L. R. (1996). Numerical Methods and Software for
Sensitivity Analysis of Differential-Algebraic Systems. Applied Numerical
Mathematics, 20, 57–79.

Marquardt, D. W. (1963). An Algorithm for Least Squares Estimation of Non-
linear Parameters. SIAM Journal of Applied Mathematics, 11(2), 431–441.

Mathworks (2003). Matlab Optimization Toolbox User’s Guide. Mathsworks
Inc., Natick, MA, USA.

Moré, J. J. (1977). The Levenberg-Marquardt Algorithm: Implementation
and Theory. In G. A. Watson, editor, Numerical Analysis, pages 105–116.
Springer Verlag, Berlin, Germany.

Najafi, M.; Nikoukhah, R. and Campbell, S. L. (2004). Computation of Con-
sistent Initial Values for Multi-Mode DAEs: Application to Scicos. Proc.
Computer Aided Control Design, Taipei, To appear.

Nielsen, H. B. (1999). Damping Parameter in Marquardts Method. Techni-
cal report, Informatics and Mathematical Modelling, Technical University of
Denmark.

Nielsen, H. B. (2000). Checking Gradient. Technical report, Informatics and
Mathematical Modelling, Technical University of Denmark.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer-Verlag,
New York, USA.

Nørsett, S. P. (1974). Semi-Explicit Runge-Kutta Methods. Technical Report 6,
Department of Mathematics, University of Trondheim. ISBN-82-7151-009-6.

Osborne, M. R. (1976). Nonlinear Least Squares – the Levenberg Algorithm
Revisited. Journal of the Australian Mathematical Society, series B , 19(3),
343–357.

Pantelides, C. C. and Barton, P. I. (1993). Equation-Oriented Dynamic Sim-
ulation: Current Status and Future Perspectives. Computers and Chemical
Engineering , 17, 263–285.

Petzold, L. R. (1982). DASSL: A Differential/Algebraic System Solver. 10th
IMACS World Congress on System Simulation and Scientific Computation.

Prothero, A. and Robinson, A. (1974). On the Stability and Accuracy of One-
Step Methods for Sloving Stiff Systems of Ordinary Differential Equations.
Mathematics of Computation, 28(125), 145–162.

References 139

Sandu, A.; Daescu, D. N. and Carmichael, G. R. (2003). Direct and Adjoint
Sensitivity Analysis of Chemical Kinetic Systems with KPP: Part 1 – Theory
and Software Tools. Atmospheric Environment , 37, 5083–5096.

Schittkowski, K. (1988). Solving Nonlinear Least Squares Problems by Ge-
neral Purpose SQP-Method. In K.-H. Hoffmann; J.-B. Hiriart-Urruty;
C. Lemarechal and J. Zowe, editors, Trends in Mathematical Optimization,
pages 295–309. Birkhäuser, Berlin.

Schittkowski, K. (2002). Numerical Data Fitting in Dynamical Systems. Kluwer
Academic Publishers, The Netherlands.

Schlegel, M.; Marquardt, W.; Ehrig, R. and Nowak, U. (2004). Sensitivity Ana-
lysis of Linearly-Implicit Differential-Algebraic Systems by One-Step Extrap-
olation. Applied Numerical Mathematics, 48(1), 83–102.

Seber, G. A. F. and Wild, C. J. (2003). Nonlinear Regression. John Wiley &
Sons, New Jersey.

Stortelder, W. J. H. (1998). Parameter Estimation in Nonlinear Dynamical
Systems. Ph.D. thesis, National Research Institute for Mathematics and
Computer Science, University of Amsterdam.

Thomsen, P. G. (2002). A Generalised Runge Kutta Method of Order Three.
Technical report, Informatics and Mathematical Modelling, Technical Uni-
versity of Denamrk.

Tjoa, I.-B. and Biegler, L. T. (1991). Simultaneous Solution and Optimiza-
tion Strategies for Parameter Estimation of Differential-Algebraic Equation
Systems. Industrial and Engineering Chemistry Research, 30, 376–385.

Villadsen, J. and Michelsen, M. L. (1978). Solution of Differential Equation
Models by Polynomial Approximation. Prentice-Hall Inc., Englewood Cliffs,
New Jersey.

140 References

